已知函數(shù) (為實(shí)常數(shù)) .
(1)當(dāng)時(shí),求函數(shù)上的最大值及相應(yīng)的值;
(2)當(dāng)時(shí),討論方程根的個(gè)數(shù).
(3)若,且對(duì)任意的,都有,求實(shí)數(shù)a的取值范圍.
(1).;(2)時(shí),方程有2個(gè)相異的根. 時(shí),方程有1個(gè)根. 時(shí),方程有0個(gè)根.(3).

試題分析:(1)通過求導(dǎo)數(shù)可得函數(shù)的單調(diào)性,在對(duì)比區(qū)間的兩端點(diǎn)的函數(shù)值即可求得函數(shù)的最大值.(2)由于參數(shù)的變化.可以采取分離變量的方法,轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù)問題.其中一個(gè)是垂直于y軸的直線,另一個(gè)是通過求出函數(shù)的走向.根據(jù)圖像即可得到結(jié)論.(3)將要說明的結(jié)論通過變形得到一個(gè)等價(jià)問題從而證明新的函數(shù)的單調(diào)性,使得問題巧妙地轉(zhuǎn)化.本題只是容量大.通過研究函數(shù)的單調(diào)性,含參函數(shù)的討論.與不等式的相結(jié)合轉(zhuǎn)化為函數(shù)的單調(diào)性的證明.
試題解析:(1),當(dāng)時(shí),.當(dāng)時(shí),,又,
,當(dāng)時(shí),取等號(hào)                 4分
(2)易知,故,方程根的個(gè)數(shù)等價(jià)于時(shí),方程根的個(gè)數(shù). 設(shè)=,
當(dāng)時(shí),,函數(shù)遞減,當(dāng)時(shí),,函數(shù)遞增.又,,作出與直線的圖像,由圖像知:
當(dāng)時(shí),即時(shí),方程有2個(gè)相異的根;
當(dāng) 或時(shí),方程有1個(gè)根;
當(dāng)時(shí),方程有0個(gè)根;              10分
(3)當(dāng)時(shí),時(shí)是增函數(shù),又函數(shù)是減函數(shù),不妨設(shè),則等價(jià)于
,故原題等價(jià)于函數(shù)時(shí)是減函數(shù),
恒成立,即時(shí)恒成立.
時(shí)是減函數(shù)     16分
(其他解法酌情給分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),討論的單調(diào)性;
(3)若對(duì)任意的恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象與直線相切于點(diǎn).
(1)求實(shí)數(shù)的值; (2)求的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(1)若,求證:當(dāng)時(shí),;
(2)若在區(qū)間上單調(diào)遞增,試求的取值范圍;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(1)若存在使得≥0成立,求的范圍
(2)求證:當(dāng)>1時(shí),在(1)的條件下,成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)對(duì)任意的,恒成立,求的最小值;
(3)若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若函數(shù)滿足,且在定義域內(nèi)恒成立,求實(shí)數(shù)b的取值范圍;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為R上的可導(dǎo)函數(shù),且,均有,則有       (  )
A.,
B.
C.,
D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)在R上可導(dǎo),函數(shù),則       .

查看答案和解析>>

同步練習(xí)冊(cè)答案