9.已知a,b,c滿足a>b>c,ac<0,則下列不等關(guān)系中正確的是(  )
A.cb2<ab2B.ab<acC.c(a-c)>0D.a+ac>b+ac

分析 由已有可得a>0,c<0,結(jié)合不等式的基本性質(zhì),逐一分析各個(gè)答案的真假,可得答案.

解答 解:∵a,b,c滿足a>b>c,ac<0,
∴a>0,c<0,
當(dāng)b=0時(shí),滿足a>b>c,ac<0,但cb2=ab2,故A錯(cuò)誤;
ab>ac,故B錯(cuò)誤;
a-c>0,故c(a-c)<0,故C錯(cuò)誤;
a+ac>b+ac,故D正確;
故選:D

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了不等式的基本性質(zhì),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.三棱錐P-ABC的底面ABC是等腰直角三角形,∠A=90°,側(cè)面PAB是等邊三角形且與底面ABC垂直,AB=6,則該三棱錐的外接球半徑為$\frac{3\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一.在中國(guó)公元前11世紀(jì)時(shí),西周的商高提出了“勾三股四弦五”的特例,這是我國(guó)勾股定理的起源.公元一世紀(jì)時(shí),《九章算術(shù)》中給出勾股定理“勾股各自乘,并而開方除之,即弦”.用如今的話說,勾股定理是指直角三角形兩直角邊的平方和等于斜邊的平方,表達(dá)式即為a2+b2=c2,如果將該表達(dá)式推廣到空間的一個(gè)長(zhǎng)方體中 (長(zhǎng)方體的長(zhǎng)、寬、高分別記為p、q、r,對(duì)角線長(zhǎng)為d),應(yīng)有(  )
A.p+q+r=dB.p2+q2+r2=d2
C.p3+q3+r3=d3D.p2+q2+r2+pq+qr+pr=d2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知二項(xiàng)式(x-$\frac{a}{\root{3}{x}}$)4的展開式中常數(shù)項(xiàng)為32,則a=(  )
A.8B.-8C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,則輸出的S=(  )
A.4B.5C.$\sqrt{15}$+1D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}滿足${a_n}+{a_{n+1}}=\frac{1}{2}({n∈{N^*}})$,其前n項(xiàng)和為Sn,a2=2,則S21=(  )
A.5B.$\frac{7}{2}$C.$\frac{9}{2}$D.$\frac{13}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且asinB=bcosA,則$2sinB-\sqrt{2}cosC$的最大值為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的導(dǎo)函數(shù).
(1)g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求g1(x),g2(x),g3(x),并猜想gn(x)的表達(dá)式(不必證明);
(2)若f(x)≥ag(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)n∈N+,比較g(1)+g(2)+…+g(n)與n-f(n)的大小,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=x3-ax2-a2x+1,(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)的圖象不存在與l:y=-x平行或重合的切線,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案