5.已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點.求證:
(1)C1O∥面AB1D1;
(2)平面A1AC⊥面AB1D1

分析 (1)連結(jié)A1C1,設(shè)A1C1∩B1D1=O1,連結(jié)AO1,證明OC1∥AO1,然后證明C1O∥面AB1D1
(2)證明A1C⊥B1D1,A1C⊥AB1,推出A1C⊥面AB1D1,即可證明平面A1AC⊥面AB1D1

解答 證明:(1)連結(jié)A1C1,設(shè)A1C1∩B1D1=O1,
連結(jié)AO1,因為ABCD-A1B1C1D1是正方體∴A1ACC1是平行四邊形
∴AC∥A1C1且 AC=A1C1
又O,O1分別是AC,A1C1的中點,∴O1C1∥AO且O1C1=AO,

∴O1C1AO是平行四邊形
∴OC1∥AO1,AO1?面AB1D1,O1C?面AB1D1
∴C1O∥面AB1D1
(2)∵CC1⊥面A1B1C1D1,∴CC1⊥B1D1
又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C,
即A1C⊥B1D1,
同理可證A1C⊥AB1,
又AB1∩B1D1=B1,
∴A1C⊥面AB1D1
∴平面A1AC⊥面AB1D1

點評 本題考查直線與平面垂直,平面與平面垂直的判定定理的應(yīng)用,考查空間想象能力以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某質(zhì)點運動的距離y與時間t的關(guān)系為y=t+lnt,那么這個質(zhì)點在t=1時的瞬時速度為(  )
A.eB.2C.1D.$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x3-4x2+5x-4.
(1)求函數(shù)f(x)的極值;
(2)求曲線在點(2,f(2))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.十六世紀(jì)以后,由于生產(chǎn)和科學(xué)技術(shù)的發(fā)展,天文、力學(xué)、航海等方面對幾何學(xué)提出了新的需要.當(dāng)時德國天文學(xué)家開普勒發(fā)現(xiàn)許多天體的運行軌道是( 。
A.拋物線B.雙曲線C.橢圓D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓的方程為(x-1)2+(y-1)2=1,P點坐標(biāo)為(2,3),
求:(1)過P點的圓的切線長.
(2)過P點的圓的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知雙曲線C:x2-y2=1,直線y=kx-1交雙曲線的左支于A、B兩點.
(1)求實數(shù)k的取值范圍;
(2)如果|AB|=6$\sqrt{3}$,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若變量x,y滿足條$\left\{\begin{array}{l}y≥0\\ x+2y≥1\\ x+4y≤3\end{array}\right.$,則z=(x+1)2+y2的最小值是( 。
A.1B.2C.$\frac{{\sqrt{5}}}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某企業(yè)一天中不同時刻的用電量y(萬千瓦時)關(guān)于時間t(小時,0≤t≤24)的函數(shù)y=f(t)近似滿足f(t)=Asin(ωt+φ)+B,(A>0,ω>0,0<φ<π).如圖是函數(shù)y=f(t)的部分圖象(t=0對應(yīng)凌晨0點).
(Ⅰ)根據(jù)圖象,求A,ω,φ,B的值;
(Ⅱ)由于當(dāng)?shù)囟眷F霾嚴(yán)重,從環(huán)保的角度,既要控制火力發(fā)電廠的排放量,電力供應(yīng)有限;又要控制企業(yè)的排放量,于是需要對各企業(yè)實行分時拉閘限電措施.已知該企業(yè)某日前半日能分配到的供電量g(t)(萬千瓦時)與時間t(小時)的關(guān)系可用線性函數(shù)模型g(t)=-2t+25(0≤t≤12)模擬.當(dāng)供電量小于該企業(yè)的用電量時,企業(yè)就必須停產(chǎn).初步預(yù)計停產(chǎn)時間在中午11點到12點間,為保證該企業(yè)既可提前準(zhǔn)備應(yīng)對停產(chǎn),又可盡量減少停產(chǎn)時間,請從這個初步預(yù)計的時間段開始,用二分法幫其估算出精確到15分鐘的停產(chǎn)時間段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)過點M(m,0)(m>0)任作一條直線與曲線C交于A,B兩點,點N(n,0),連接AN,BN,且m+n=0.求證:∠ANM=∠BNM.

查看答案和解析>>

同步練習(xí)冊答案