分析 (1)利用向量的數(shù)量積以及兩角和與差的三角函數(shù)化簡函數(shù)的解析式,然后求解最值.
(2)利用函數(shù)的解析式求解A,然后利用余弦定理求解即可,得到bc的范圍,然后利用基本不等式求解最值.
解答 解:(1)∵$\overrightarrow{OP}=(\sqrt{3},1),\overrightarrow{QP}=(\sqrt{3}-cosx,1-sinx)$,
∴$f(x)=3-\sqrt{3}cosx+1-sinx=4-2sin(x+\frac{π}{3})$,
∴當$x=\frac{π}{6}+2kπ(k∈Z)$時,f(x)取得最小值2.
(2)∵f(A)=4,∴$A=\frac{2π}{3}$,
又∵BC=3,∴${a^2}={b^2}+{c^2}-2bccos\frac{2π}{3}$,
∴9=(b+c)2-bc.$bc≤\frac{{{{(b+c)}^2}}}{4}$,
∴$\frac{{3{{(b+c)}^2}}}{4}≤9$,
∴$b+c≤2\sqrt{3}$,當且僅當b=c取等號,
∴三角形周長最大值為$3+2\sqrt{3}$.
點評 本題考查向量的數(shù)量積以及兩角和與差的三角函數(shù),三角函數(shù)的最值,基本不等式以及余弦定理的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | 5$\sqrt{2}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 4 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | -$\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,3) | B. | (-2,-3) | C. | (4,-4) | D. | (4,4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com