分析 由題意可得A(-a,0),F(xiàn)(c,0),令x=c,代入雙曲線的方程,可得B的坐標,由兩點的斜率公式,化簡整理,結(jié)合a,b,c的關(guān)系和離心率公式,計算即可得到所求值.
解答 解:由題意可得A(-a,0),F(xiàn)(c,0),
令x=c,可得y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{^{2}}{a}$,
即有B(c,$\frac{^{2}}{a}$),
由直線AB的斜率為1,可得:$\frac{\frac{^{2}}{a}}{c+a}$=1,
即有b2=a(c+a),
又b2=c2-a2=(c-a)(c+a),
即有c-a=a,即c=2a,
e=$\frac{c}{a}$=2.
故答案為:2.
點評 本題考查雙曲線的離心率的求法,注意運用兩點的直線的斜率公式和基本量的關(guān)系,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 16 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f(\frac{1}{2})<f(-\frac{3}{2})<f(3)$ | B. | $f(3)<f(-\frac{3}{2})<f(\frac{1}{2})$ | C. | $f(\frac{1}{2})<f(3)<f(-\frac{3}{2})$ | D. | $f(3)<f(\frac{1}{2})<f(-\frac{3}{2})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com