分析 (1)由a1=1,且an+1-an=n+1(n∈N*),可得an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+(n-2)+…+2+1,利用等差數(shù)列的求和公式即可求得數(shù)列{an}的通項公式;
(2)依題意,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1+2n-2+…+21+1,利用等比數(shù)列的求和公式即可得到數(shù)列{an}的通項公式.
解答 解:(1)∵a1=1,an+1-an=n+1(n∈N*),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+(n-2)+…+2+1=$\frac{n(n+1)}{2}$,
即數(shù)列{an}的通項公式為:an=$\frac{n(n+1)}{2}$;
(2)∵a1=1,an+1=an+2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1+2n-2+…+21+1=$\frac{1{-2}^{n}}{1-2}$=2n-1.
∴數(shù)列{an}的通項公式為:an=2n-1.
點評 本題考查數(shù)列遞推式的運用,突出考查累加法的運用,考查等差數(shù)列與等比數(shù)列的求和公式的運用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{4}{3}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(-2,0) | B. | (-∞,0) | C. | (-∞,2)∪(0,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x0與 g(x)=1 | B. | f(x)=|x|與$g(x)=\sqrt{x^2}$ | ||
C. | f(x)=x與 $g(x)=\frac{x^2}{x}$ | D. | $f(x)=\root{3}{x^3}$與 $g(x)={(\sqrt{x})^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com