10.等差數(shù)列{an}的公差為d(d<0),ai∈{1,-2,3,-4,5}(i=1,2,3),則數(shù)列{bn}中,b1=1,點(diǎn)Bn(n,bn)在函數(shù)g(x)=a•2x(a是常數(shù))的圖象上.
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)若cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

分析 (I)等差數(shù)列{an}的公差為d(d<0),ai∈{1,-2,3,-4,5}(i=1,2,3),可得a1=5,a2=3,a3=1.利用等差數(shù)列的通項(xiàng)公式即可得出.由點(diǎn)Bn(n,bn)在函數(shù)g(x)=a•2x(a是常數(shù))的圖象上,可得bn=a•2n.利用b1=1,解得a,即可得出.
(II)cn=an•bn=(7-2n)•2n-1.利用“錯(cuò)位相減法”與等比數(shù)列的求和公式即可得出.

解答 解:(I)等差數(shù)列{an}的公差為d(d<0),ai∈{1,-2,3,-4,5}(i=1,2,3),
∴a1=5,a2=3,a3=1.∴d=3-5=-2,∴an=5-2(n-1)=7-2n.
∵點(diǎn)Bn(n,bn)在函數(shù)g(x)=a•2x(a是常數(shù))的圖象上,∴bn=a•2n
∵b1=1,∴1=a×21,解得a=$\frac{1}{2}$.
∴bn=2n-1
(II)cn=an•bn=(7-2n)•2n-1
∴數(shù)列{cn}的前n項(xiàng)和Sn=5×1+3×2+1×22+…+(7-2n)•2n-1
∴2Sn=5×2+3×22+…+(9-2n)•2n-1+(7-2n)•2n
∴-Sn=5-2(2+22+…+2n-1)-(7-2n)•2n=5-$2×\frac{2({2}^{n-1}-1)}{2-1}$-(7-2n)•2n=9-(9-2n)•2n,
∴Sn=(9-2n)•2n-9.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、“錯(cuò)位相減法”、等比數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在長方體ABCD-A1B1C1D1中,AAl=AB=2AD=2,E為AB的中點(diǎn),F(xiàn)為D1E
上的一點(diǎn),D1F=2FE.
(l)證明:平面DFC⊥平面D1EC;
(2)求二面角A-DF-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將4名同學(xué)隨機(jī)分成兩組參加數(shù)學(xué)、英語競(jìng)賽,每組2人,則甲參加數(shù)學(xué)競(jìng)賽且乙參加英語競(jìng)賽的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.復(fù)數(shù)z=$\frac{2+3i}{1+i}$(i為虛數(shù)單位),則z的共軛復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,∠ACB=90°,∠BAC=30°,BC=1,且三棱柱ABC-A1B1C1的體積為3,則三棱柱ABC-A1B1C1的外接球的表面積為( 。
A.16πB.12πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知等差數(shù)列{an}滿足a5=11.a(chǎn)2+a10=26,則a7+a8=32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow a$=(1,-3),$\overrightarrow b$=(2,0),$\overrightarrow c$=(-2,k),若($\overrightarrow a-\overrightarrow b}$)⊥(${-2\overrightarrow c}$),則k=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)矩陣$M=[{\begin{array}{l}2&0\\ 0&3\end{array}}]$,求曲線C:x2+y2=1在矩陣M-1所對(duì)應(yīng)的線性變換作用下得到的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長為2的菱形,且∠ABC=60°,AA1=3,AC,BD相交于點(diǎn)O,E為線段AD1上一點(diǎn).
(1)試確定點(diǎn)E的位置,使得A1B∥OE;
(2)在(1)的條件下,求A1C與平面ACE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案