A. | 16π | B. | 12π | C. | 8π | D. | 4π |
分析 根據(jù)棱柱的體積公式求得棱柱的側(cè)棱長,再利用三棱柱的底面是直角三角形可得外接球的球心為上、下底面直角三角形斜邊中點連線的中點O,從而求得外接球的半徑R,代入球的表面積公式計算.
解答 解:∵∠ACB=90°,∠BAC=30°,BC=1,∴$AC=\sqrt{3}$.
∵AA1⊥底面ABC,
∴三棱柱ABC-A1B1C1的體積$V=\frac{1}{2}×1×\sqrt{3}•C{C_1}=3$,得$C{C_1}=2\sqrt{3}$,
∴三棱柱ABC-A1B1C1的外接球半徑$r=\frac{1}{2}\sqrt{1+{{(\sqrt{3})}^2}+{{(2\sqrt{3})}^2}}=2$,
∴${S_表}=4π×{2^2}=16π$.
故選:A.
點評 本題考查了求三棱柱的外接球的表面積,利用三棱柱的結(jié)構(gòu)特征求得外接球的半徑是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2015}{2}$ | B. | 2015 | C. | 2016 | D. | 2013 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | $-\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com