【題目】為調(diào)查中國(guó)及美國(guó)的高中生在“家”、“朋友聚集的地方”、“個(gè)人空間”這三個(gè)場(chǎng)所中感到最幸福的場(chǎng)所是哪個(gè),從中國(guó)某城市的高中生中隨機(jī)抽取了55人,從美國(guó)某城市高中生中隨機(jī)抽取了45人進(jìn)行答題。中國(guó)高中生的答題情況:選擇“家”的高中生的人數(shù)占,選擇“朋友聚集的地方”的高中生的人數(shù)占,選擇“個(gè)人空間”的高中生的人數(shù)占,美國(guó)高中生的答題情況:選擇“家”的高中生的人數(shù)占,選擇“朋友聚集的地方”的高中生的人數(shù)占,選擇“個(gè)人空間”的高中生的人數(shù)占

(1)請(qǐng)根據(jù)以上調(diào)查結(jié)果將下面的2X2列聯(lián)表補(bǔ)充完整,并判斷能否有95%的把握認(rèn)為戀家(在家里感到最幸福)與國(guó)別有關(guān);

在家里感到最幸福

在其他場(chǎng)所感到最幸福

總計(jì)

中國(guó)高中生

美國(guó)高中生

總計(jì)

(2)從被調(diào)查的不“戀家”的美國(guó)高中生中,用分層抽樣的方法隨機(jī)選出4人接受進(jìn)一步調(diào)查,再?gòu)?人中隨機(jī)選出2人到中國(guó)交流學(xué)習(xí),求2人中含有在“個(gè)人空間”感到最幸福的高中生的概率。

0.050

0.025

0.010

0.001

3.841

5.024

6.635

10.8

附:

【答案】(1)有95%的把握認(rèn)為戀家與國(guó)別有關(guān)(2)p=

【解析】

1)根據(jù)題意填寫(xiě)列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值,即可得出結(jié)論;

2)根據(jù)分層抽樣原理,利用列舉法求出基本事件的件數(shù),計(jì)算所求的概率值.

(1)由題意,中國(guó)高中生的答題情況:選擇“家”的高中生的人數(shù)為人,則選擇“其他場(chǎng)所”的高中生的人數(shù)為人,美國(guó)高中生的答題情況:選擇“家”的高中生的人數(shù)為人,則選擇“其他場(chǎng)所”的高中生的人數(shù)占人,可得的列表:

在家里感到最幸福

在其他場(chǎng)所感到最幸福

總計(jì)

中國(guó)高中生

22

33

55

美國(guó)高中生

9

4

45

總計(jì)

31

69

100

所以,

所以有95%的把握認(rèn)為“戀家”與國(guó)別有關(guān).

2)用分層抽樣的方法抽取4人,從被調(diào)查的不“戀家”的美國(guó)高中生中選出4人,其中含有在“個(gè)人空間”的有1人,分別設(shè)為,

從中抽取2人,共有:,共有6種抽法,

其中含有“個(gè)人空間”共有:,共有3種,

所以2人中含有在“個(gè)人空間”感到最幸福的高中生的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知梯形如圖(1)所示,其中, ,四邊形是邊長(zhǎng)為的正方形,現(xiàn)沿進(jìn)行折疊,使得平面平面,得到如圖(2)所示的幾何體.

(Ⅰ)求證:平面平面

(Ⅱ)已知點(diǎn)在線段上,且平面,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式ax2-2a+1x+20,其中aR

1)當(dāng)a=1時(shí),求原不等式的解集;

2)當(dāng)a≥0時(shí),求原不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某保險(xiǎn)公司對(duì)一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金,保險(xiǎn)公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付概率):

已知三類工種職工每人每年保費(fèi)分別為25元、25元、40元,出險(xiǎn)后的賠償金額分別為100萬(wàn)元、100萬(wàn)元、50萬(wàn)元,保險(xiǎn)公司在開(kāi)展此項(xiàng)業(yè)務(wù)過(guò)程中的固定支出為每年10萬(wàn)元.

(1)求保險(xiǎn)公司在該業(yè)務(wù)所或利潤(rùn)的期望值;

(2)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇:

方案1:企業(yè)不與保險(xiǎn)公司合作,職工不交保險(xiǎn),出意外企業(yè)自行拿出與保險(xiǎn)公司提供的等額賠償金賠償付給意外職工,企業(yè)開(kāi)展這項(xiàng)工作的固定支出為每年12萬(wàn)元;

方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的70%,職工個(gè)人負(fù)責(zé)保費(fèi)的30%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付,企業(yè)無(wú)額外專項(xiàng)開(kāi)支.

請(qǐng)根據(jù)企業(yè)成本差異給出選擇合適方案的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱臺(tái)中,上底面邊長(zhǎng)為4,下底面邊長(zhǎng)為8,高為5,點(diǎn)分別在上,且.過(guò)點(diǎn)的平面與此四棱臺(tái)的下底面會(huì)相交,則平面與四棱臺(tái)的面的交線所圍成圖形的面積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)fx=x2-2m+1x+m

1)若方程fx=0有兩個(gè)不等的實(shí)根x1,x2,且-1x10x21,求m的取值范圍;

2)若對(duì)任意的x[1,2]≤2恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,過(guò)左焦點(diǎn)且垂直于軸的直線交橢圓兩點(diǎn),且.

(Ⅰ)的方程;

(Ⅱ)若直線是圓上的點(diǎn)處的切線,點(diǎn)是直線上任一點(diǎn),過(guò)點(diǎn)作橢圓的切線,切點(diǎn)分別為,設(shè)切線的斜率都存在.求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知對(duì)任意的實(shí)數(shù)都有:,且當(dāng)時(shí),有

1)求;

2)求證:上為增函數(shù);

3)若,且關(guān)于的不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓)與拋物線:的一個(gè)公共點(diǎn),且橢圓與拋物線具有一個(gè)相同的焦點(diǎn)

(Ⅰ)求橢圓及拋物線的方程

(Ⅱ)設(shè)過(guò)且互相垂直的兩動(dòng)直線,與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案