19.已知a=2${\;}^{-\frac{2}{3}}$,$b={({\frac{1}{2}})^{\frac{4}{3}}}$,$c={2^{-\frac{1}{3}}}$,則下列關系式中正確的是( 。
A.a<c<bB.a<b<cC.b<a<cD.c<a<b

分析 利用指數(shù)函數(shù)的單調性求解.

解答 解:∵a=2${\;}^{-\frac{2}{3}}$,$b={({\frac{1}{2}})^{\frac{4}{3}}}$,$c={2^{-\frac{1}{3}}}$,
∴0<b=$(\frac{1}{2})^{\frac{4}{3}}$=${2}^{-\frac{4}{3}}$<a=2${\;}^{-\frac{2}{3}}$<c=${2}^{-\frac{1}{3}}$<20=1,
∴b<a<c.
故選:C.

點評 本題考查三個數(shù)的大小的求法,是基礎題,解題時要認真審題,注意指數(shù)函數(shù)單調性的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設備上加工,在每臺A、B設備上加工一件甲所需工時分別為1h,2h,加工一件乙設備所需工時分別為2h,1h.A、B兩種設備每月有效使用臺時數(shù)分別為400h和500h,分別用x,y表示計劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學關系式,并畫出相應的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設定義域為R的函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,(x≤0)}\\{{x}^{2}-2x+1,(x>0)}\end{array}\right.$.
(1)在如圖所示的平面直角坐標系內作出函數(shù)f(x)的圖象,并寫出函數(shù)f(x)的單調區(qū)間(不需證明);
(2)求函數(shù)f(x)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知奇函數(shù)f(x)的定義域為R,且f(x+$\frac{7}{2}$)=$\frac{1}{f(x)}$,f(4)>1,f(2012)=$\frac{2a+3}{a-1}$,則實數(shù)a的取值范圍是-$\frac{2}{3}$<a<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若直線y=kx+1與圓x2+y2+kx-y-9=0的兩個交點恰好關于y軸對稱,則k等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和Sn=n2,數(shù)列{bn}滿足b1=a1,bn+1(an+1-an)=bn
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列$\left\{{\frac{a_n}{b_n}}\right\}$的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.“k=2且b=-1”是“直線y=kx+b過點(1,1)”的(  )
A.充分條件不必要B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某單位生產(chǎn)A、B兩種產(chǎn)品,需要資金和場地,生產(chǎn)每噸A種產(chǎn)品和生產(chǎn)每噸B種產(chǎn)品所需資金和場地的數(shù)據(jù)如表所示:
資源
產(chǎn)品
資金(萬元)場地(平方米)
A2100
B350
現(xiàn)有資金12萬元,場地400平方米,生產(chǎn)每噸A種產(chǎn)品可獲利潤3萬元;生產(chǎn)每噸B種產(chǎn)品可獲利潤2萬元,分別用x,y表示計劃生產(chǎn)A、B兩種產(chǎn)品的噸數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學關系式,并畫出相應的平面區(qū)域;
(2)問A、B兩種產(chǎn)品應各生產(chǎn)多少噸,才能產(chǎn)生最大的利潤?并求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在直角坐標系xOy中,曲線C:x2=4y與直線y=kx+a(a>0)交與M,N兩點.
(1)當k=0時,分別求C在點M和N處的切線方程;
(2)y軸上是否存在點P,使得當k變動時,總有∠OPM=∠OPN?說明理由.

查看答案和解析>>

同步練習冊答案