14.若角520°的始邊為x軸非負(fù)半軸,則它的終邊落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用終邊相同的角的公式化520°,即可得出結(jié)論.

解答 解:520°=360°+160°,
且90°<160°<180°,
∴角520°的終邊在第二象限.
故選:B.

點(diǎn)評 本題考查了終邊相同的角的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某商場出售三種品牌電腦,現(xiàn)存分別是60臺、36臺和24臺,用分層抽樣的方法從中抽取10臺進(jìn)行檢測,這三種品牌的電腦依次應(yīng)抽取的臺數(shù)是( 。
A.6,3,1B.5,3,2C.5,4,1D.4,3,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在用反證法證明命題“過一點(diǎn)只有一條直線與已知平面垂直”時,應(yīng)假設(shè)(  )
A.過兩點(diǎn)有一條直線與已知平面垂直
B.過一點(diǎn)有一條直線與已知平面平行
C.過一點(diǎn)有兩條直線與已知平面垂直
D.過一點(diǎn)有一條直線與已知平面不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)等差數(shù)列{an}的前n項和為Sn,且滿足a1008+a1009>0,a1009<0,則數(shù)列$\left\{{\frac{1}{a_n}}\right\}$中值最小的項是( 。
A.第1008 項B.第1009 項C.第2016項D.第2017項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\overrightarrow a=({1,t})$,$\overrightarrow b=(-5,\;2\;)$且$\overrightarrow a•\overrightarrow b=1$,求當(dāng)k為何值時,
(1)k$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-3\overrightarrow b$垂直;
(2)k$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-3\overrightarrow b$平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知△ABC的外接圓的圓心為O,半徑為1,$2\overrightarrow{AO}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,且|$\overrightarrow{AO}$|=|$\overrightarrow{AB}$|,則$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影為( 。
A.$\frac{1}{2}$B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.用數(shù)歸納法證明“當(dāng)n為正奇數(shù)時,xn+yn能被x+y整除”,在第二步時,正確的設(shè)法是( 。
A.設(shè)n=k(k∈N*)正確,再推n=k+1時正確
B.設(shè)n=k(k∈N*)正確,再推n=2k+1時正確
C.設(shè)n=k(k∈N*)正確,再推n=k+2時正確
D.設(shè)n=2k+1(k∈N*)正確,再推n=2k-1時正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:x<1;命題q:不等式x2+x-2<0成立,則命題p的( 。┦敲}q.
A.充分而不必要條件B.充要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$是單位向量,且$\overrightarrow a•\overrightarrow b=\frac{1}{2}$,則$({\overrightarrow c-\overrightarrow a})•({\overrightarrow c-\overrightarrow b})$的最小值是$\frac{3}{2}$-$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案