【題目】現(xiàn)安排6名同學前往4所學校進行演講,要求甲、乙兩同學不能前往同一個學校,每個學校都有人前往,每人只前往一個學校,則滿足上述要求的不同安排方案數(shù)為________.(用數(shù)字作答)

【答案】1320

【解析】

4所學校人數(shù)是3,1,1,12,2,1,1兩種情況討論,采用間接法來處理.

安排6名同學前往4所學校進行演講,每個學校都有人前往,每人只前往一個學校,有兩種情況:

4所學校的人數(shù)是3,1,1,1時,則有種不同安排方式,當甲、乙前往同一學校時,

種不同的安排方式;

4所學校的人數(shù)是2,21,1時,則有種不同安排方式,當甲、乙前往同一學校時,

種不同的安排方式;

故甲、乙兩同學不能前往同一個學校,每個學校都有人前往,每人只前往一個學校共有

.

故答案為:1320

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點是橢圓的左、右焦點,點是該橢圓上一點,若當時,面積達到最大,最大值為.

1)求橢圓的標準方程;

2)設(shè)為坐標原點,是否存在過左焦點的直線,與橢圓交于兩點,使得的面積為?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某少兒游泳隊需對隊員進行限時的仰臥起坐達標測試.已知隊員的測試分數(shù)與仰臥起坐

個數(shù)之間的關(guān)系如下:;測試規(guī)則:每位隊員最多進行三組測試,每組限時1分鐘,當一組測完,測試成績達到60分或以上時,就以此組測試成績作為該隊員的成績,無需再進行后續(xù)的測試,最多進行三組;根據(jù)以往的訓練統(tǒng)計,隊員“喵兒”在一分鐘內(nèi)限時測試的頻率分布直方圖如下:

(1)計算值;

(2)以此樣本的頻率作為概率,求

①在本次達標測試中,“喵兒”得分等于的概率;

②“喵兒”在本次達標測試中可能得分的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下面類比推理:

①“若2a<2b,則a<b”類比推出“若a2<b2,則a<b”;

②“(a+b)c=ac+bc(c≠0)”類比推出“ (c≠0)”;

③“a,b∈R,若a-b=0,則a=b”類比推出“a,b∈C,若a-b=0,則a=b”;

④“a,b∈R,若a-b>0,則a>b”類比推出“a,b∈C,若a-b>0,則a>b(C為復數(shù)集)”.

其中結(jié)論正確的個數(shù)為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設(shè)拋物線的焦點為F,點P是半橢圓上的一點,過點P作拋物線C的兩條切線,切點分別為A、B,且直線PA、PB分別交y軸于點M、N

1)證明:;

(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,.

1)證明:;

2)設(shè)點M在線段PC上,且,若的面積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C的頂點在坐標原點,焦點在坐標軸上.

1)若拋物線C經(jīng)過點,求C的標準方程;

2)拋物線C的焦點m是大于零的常數(shù)),若過點F的直線與C交于 兩點,,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,命題:對,不等式恒成立;命題,使得成立.

(1)若為真命題,求的取值范圍;

(2)當時,若假,為真,求的取值范圍.

查看答案和解析>>

同步練習冊答案