分析 利用分段函數(shù)是減函數(shù),結(jié)合對數(shù)函數(shù)以及一次函數(shù)的單調(diào)性判斷a的范圍,列出不等式求解即可.
解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a(x≤1)}\\{lo{g}_{a}x(x>1)}\end{array}\right.$在區(qū)間(-∞,+∞)上是減函數(shù),
可得:$\left\{\begin{array}{l}{0<a<1}\\{3a-1<0}\\{3a-1+4a≥0}\end{array}\right.$解得a∈[$\frac{1}{7}$,$\frac{1}{3}$).
實(shí)數(shù)a的取值范圍:[$\frac{1}{7}$,$\frac{1}{3}$).
點(diǎn)評 本題考查分段函數(shù)的應(yīng)用,函數(shù)的單調(diào)性的應(yīng)用,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | $-\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -i | C. | -1 | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p1,p2 | B. | p3,p4 | C. | p2,p3 | D. | p1,p4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x=kπ+\frac{π}{6}(k∈Z)$ | B. | x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z) | C. | $x=kπ+\frac{5π}{24}(k∈Z)$ | D. | $x=\frac{kπ}{2}+\frac{5π}{24}(k∈Z)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{31}{128}(2+\sqrt{2})a$ | B. | $\frac{31}{64}(2+\sqrt{2})a$ | C. | $(1+\frac{{\sqrt{2}}}{32})a$ | D. | $(1-\frac{{\sqrt{2}}}{32})a$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AD}$與$\overrightarrow{BC}$ | B. | $\overrightarrow{OA}$與$\overrightarrow{OB}$ | C. | $\overrightarrow{AC}$與$\overrightarrow{BD}$ | D. | $\overrightarrow{EO}$與$\overrightarrow{OF}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com