3.已知函數(shù)f(x)=x3+x,函數(shù)g(x)滿足g(x)+g(2-x)=0,若函數(shù)h(x)=g(x)-f(x-1)有10個(gè)零點(diǎn),則所有零點(diǎn)之和為10.

分析 求出g(x)的對稱中心,函數(shù)f(x-1)的對稱中心,利用函數(shù)的零點(diǎn)的個(gè)數(shù)求解即可.

解答 解:函數(shù)f(x)=x3+x,是奇函數(shù),對稱中心為(0,0),函數(shù)y=f(x-1)的對稱中心為(1,0),
函數(shù)g(x)滿足g(x)+g(2-x)=0,可知函數(shù)的對稱中心為:(1,0),
函數(shù)h(x)=g(x)-f(x-1)有10個(gè)零點(diǎn),就是方程g(x)=f(x-1)有10個(gè)解,
即函數(shù)y=g(x)與y=f(x-1)有10個(gè)交點(diǎn),并且關(guān)于(1,0)對稱,
所以函數(shù)h(x)=g(x)-f(x-1)有10個(gè)零點(diǎn),則所有零點(diǎn)之和為:10.
故答案為:10.

點(diǎn)評 本題考查函數(shù)的零點(diǎn)個(gè)數(shù)的判斷,函數(shù)的對稱性的應(yīng)用,考查分析問題解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.計(jì)算:
(1)log225•log32$\sqrt{2}$•log59;
(2)(2$\frac{3}{5}$)0+2-2×(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$-0.250.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ 2x+y-4≥0\\ x≤2\end{array}\right.$時(shí),z=x+y的最小值為( 。
A.4B.3C.2D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC的中點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖所示.

(Ⅰ)求三棱錐P-ABD的體積.
(Ⅱ)在∠ACB的平分線所在直線上確定一點(diǎn)Q,使得PQ∥平面ABD,并求此時(shí)PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.△ABC是邊長為2的等邊三角形,已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{a}$+2$\overrightarrow$,則下列結(jié)論錯(cuò)誤的是( 。
A.|$\overrightarrow$|=1B.($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$C.$\overrightarrow{a}$•$\overrightarrow$=1D.|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.拋物線x2=4y的焦點(diǎn)為F,準(zhǔn)線為l,經(jīng)過F且傾斜角為$\frac{π}{6}$的直線與拋物線在y軸右側(cè)的部分相交于點(diǎn)A,AK⊥l,垂足為K,則△AKF的面積是(  )
A.4B.$4\sqrt{3}$C.1D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法正確的是( 。
A.“x2+x-2>0”是“x>1”的充分不必要條件
B.“若am2<bm2,則a<b”的逆否命題為真命題
C.命題“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1>0”
D.命題“若x=$\frac{π}{4}$,則tanx=1”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列四個(gè)函數(shù):
①y=3-x;②y=2x-1(x>0);③y=x2+2x-10,;④$\left\{\begin{array}{l}{x(x≤0)}\\{\frac{1}{x}(x>0)}\end{array}\right.$.
其中定義域與值域相同的函數(shù)有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,角A,B,C的對邊分別是a,b,c,若$\frac{c}{sinB}$+$\frac{sinC}$=2a,b=$\sqrt{2}$,則△ABC面積是1.

查看答案和解析>>

同步練習(xí)冊答案