11.已知x1,x2是方程(x-1)2=-3的兩個(gè)相異根,當(dāng)x1=1-$\sqrt{3}$i(i為虛數(shù)單位)時(shí),則x22為(  )
A.4+2$\sqrt{3}$iB.-2+2$\sqrt{3}$iC.4-2$\sqrt{3}$iD.-2-2$\sqrt{3}$i

分析 由方程(x-1)2=-3化簡(jiǎn)得到x1+x2=2,然后再由x1的值求出x2,則答案可求.

解答 解:由(x-1)2=-3,
得x2-2x+4=0.
則x1+x2=2.
∵x1=1-$\sqrt{3}$i,
∴1-$\sqrt{3}$i+x2=2.
∴x2=1+$\sqrt{3}$i.
則x22=(1+$\sqrt{3}$i)2=-2+2$\sqrt{3}$i.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知定義在(-∞,4]上的函數(shù)f(x)與其導(dǎo)函數(shù)f'(x)滿足(x-1)(x-4)[f'(x)-f(x)]<0,
若$f({|x|+|y|+1})-{e^{\frac{1}{2}|x|-1}}f({\frac{1}{2}|x|+|y|+2})<0$,則點(diǎn)(x,y)所在區(qū)域的面積為( 。
A.12B.6C.18D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ex-mx,
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若函數(shù)g(x)=f(x)-lnx+x2存在兩個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.下面的圖形無(wú)限向內(nèi)延續(xù),最外面的正方形的邊長(zhǎng)是1,從外到內(nèi),第n個(gè)正方形與其內(nèi)切圓之間的深色圖形面積記為${S_n}(n∈{N^*})$.
(1)試寫出Sn+1與${S_n}(n∈{N^*})$的遞推關(guān)系式;
(2)設(shè)${T_n}={S_1}+{S_2}+…+{S_n}(n∈{N^*})$,求Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=(x3+2x2+ax-a)ex,f′(x)為f(x)的導(dǎo)函數(shù),則f′(0)的值為( 。
A.0B.1C.-aD.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知i是虛數(shù)單位,計(jì)算$\frac{(3-4i)(1+i)^{3}}{4+3i}$的結(jié)果為2+2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知;$f(n)=\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}$,則f(n+1)-f(n)=( 。
A.$\frac{1}{2n+1}+\frac{1}{2n+2}$B.$\frac{1}{2n+2}-\frac{1}{n+1}$
C.$\frac{1}{2n+2}$D.$\frac{1}{2n+1}+\frac{1}{2n+2}-\frac{1}{n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列說(shuō)法正確的是( 。
A.類比推理、歸納推理、演繹推理都是合情推理
B.合情推理得到的結(jié)論一定是正確的
C.合情推理得到的結(jié)論不一定正確
D.歸納推理得到的結(jié)論一定是正確的

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{3}{x^3}-{x^2}+({1-{m^2}})x({0<m<1})$
(1)求函數(shù)f(x)的極大值點(diǎn)和極小值點(diǎn);
(2)若f(x)恰好有三個(gè)零點(diǎn),求實(shí)數(shù)m取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案