利用換底公式求值或證明:
(1)求值:log225•log34•log59;
(2)求值:(log43+log83)(log32+log92);
(3)證明:logab•logbc•logca=1(a>0,b>0,c>0,a≠1,b≠1,c≠1).
考點:對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)的換底公式即可得出.
解答: (1)解:原式=
2lg5
lg2
2lg2
lg3
2lg3
lg5
=8;
(2)解:原式=(
lg3
2lg2
+
lg3
3lg2
)(
lg2
lg3
+
lg2
2lg3
)
=(
1
2
+
1
3
)•(1+
1
2
)
=
5
4

(3)證明:左邊=
lgb
lga
lgc
lgb
lga
lgc
=1=右邊,
∴l(xiāng)ogab•logbc•logca=1(a>0,b>0,c>0,a≠1,b≠1,c≠1).
點評:本題考查了對數(shù)的換底公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
-x,x<0
a•3x,x≥0
,若f[f(x)]=0只有一個零點,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足:“對于區(qū)間(1,2)上的任意實數(shù)x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”,則稱f(x)為完美函數(shù).在下列四個函數(shù)中,完美函數(shù)是(  )
A、f(x)=
1
x
B、f(x)=|x|
C、f(x)=2x
D、f(x)=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:函數(shù)y=x2+ax+4的圖象與x軸沒有公共點,q:-1≤a≤5,若命題p∧q為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
x
,x≥2
(x-1)2,x<2
,若關(guān)于x的方程f(x)=k有兩個不同的實根,則數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:不等式x2+x+1≤0的解集為R,命題q:不等式
x-2
x-1
≤0的解集為{x|1<x≤2},則命題“p∨q”“p∧q”“?p”“?q”中真命題的個數(shù)有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如右圖所示,某市擬在長為8km的道路OP的一側(cè)修建一條運(yùn)動賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)y=Asinwx(A>0,w>0),x∈[0,4]的圖象,且圖象的最高點為S(3,2
3
),賽道的后一部分為折線段MNP,為保證賽道運(yùn)動會的安全,限定∠MNP=120°.
(1)求A,w的值和M,P兩點間的距離;
(2)如何設(shè)計,才能使這線段賽道MNP最長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2-4x+6,x≥0
x+6,x<0
,則不等式f(x)>3的解集是( 。
A、(-3,0)∪(3,+∞)
B、(-3,1)∪(2,+∞)
C、(-1,1)∪(3,+∞)
D、(-∞,-3)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由0,1,2,3,4,5組成的四位偶數(shù)(沒有重復(fù)數(shù)字)共有( 。﹤.
A、180B、156
C、150D、144

查看答案和解析>>

同步練習(xí)冊答案