A. | $\frac{{\sqrt{5}}}{10}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{4\sqrt{5}}}{5}$ |
分析 由雙曲線的離心率求得$\frac{a}$=2,即可求得雙曲線的漸近線方程,由拋物線的焦點坐標(biāo),由點到直線的距離公式,即可求得拋物線y2=4x的焦點到雙曲線的漸近線的距離.
解答 解:由雙曲線的離心率e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=$\sqrt{5}$,即$\frac{a}$=2,
則雙曲線的漸近線方程y=±$\frac{a}$x,即y=±2x,
拋物線y2=4x的焦點F(1,0),
則F(1,0)到y(tǒng)±2x=0的距離d=$\frac{丨0±2×1丨}{\sqrt{1+{2}^{2}}}$=$\frac{2\sqrt{5}}{5}$,
∴拋物線y2=4x的焦點到雙曲線的漸近線的距離$\frac{2\sqrt{5}}{5}$,
故選C.
點評 本題考查雙曲線簡單幾何性質(zhì),考查拋物線的焦點,點到直線的距離公式,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,e) | B. | (-∞,e] | C. | $(-∞,\frac{1}{e})$ | D. | $(-∞,\frac{1}{e}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,+∞) | B. | (4,+∞) | C. | (-∞,-2] | D. | (-∞,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | 6 | C. | -5 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=\frac{1}{x}-{x^2}$ | B. | $f(x)=\frac{1}{x}-{x^3}$ | C. | $f(x)=\frac{1}{x}-{e^x}$ | D. | $f(x)=\frac{1}{x}-lnx$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com