18.己知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a1+2a2=5,4a32=a2a6
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=2,且bn+1=bn+an,求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)cn=$\frac{a_n}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項(xiàng)和為Tn

分析 (1)設(shè)等比數(shù)列的公比為q>0,運(yùn)用等比數(shù)列的通項(xiàng)公式,結(jié)合條件可得首項(xiàng)和公比的方程組,解方程即可得到所求通項(xiàng)公式;
(2)運(yùn)用bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1),結(jié)合等比數(shù)列的求和公式,計(jì)算即可得到所求通項(xiàng)公式;
(3)求得cn=$\frac{a_n}{{{b_n}{b_{n+1}}}}$=$\frac{{2}^{n-1}}{(1+{2}^{n-1})(1+{2}^{n})}$=$\frac{1}{1+{2}^{n-1}}$-$\frac{1}{1+{2}^{n}}$,運(yùn)用數(shù)列的求和方法:裂項(xiàng)相消求和,即可得到所求和.

解答 解:(1)等比數(shù)列{an}的各項(xiàng)均為正數(shù),且公比q>0,
a1+2a2=5,4a32=a2a6,可得a1+2a1q=5,4(a1q22=a12q6,
解得a1=1,q=2,
則an=a1qn-1=2n-1,n∈N*;
(2)數(shù)列{bn}滿足b1=2,且bn+1=bn+an,
可得bn+1-bn=an=2n-1,
則bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=2+1+2+…+2n-2
=2+$\frac{1-{2}^{n-1}}{1-2}$=2n-1+1,n∈N*;
(3)cn=$\frac{a_n}{{{b_n}{b_{n+1}}}}$=$\frac{{2}^{n-1}}{(1+{2}^{n-1})(1+{2}^{n})}$=$\frac{1}{1+{2}^{n-1}}$-$\frac{1}{1+{2}^{n}}$,
則數(shù)列{cn}的前n項(xiàng)和為Tn=$\frac{1}{1+{2}^{0}}$-$\frac{1}{1+2}$+$\frac{1}{1+2}$-$\frac{1}{1+{2}^{2}}$+…+$\frac{1}{1+{2}^{n-1}}$-$\frac{1}{1+{2}^{n}}$
=$\frac{1}{2}$-$\frac{1}{1+{2}^{n}}$.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查方程思想,以及數(shù)列恒等式的運(yùn)用,考查裂項(xiàng)相消求和,以及化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=Asin(ωx+$\frac{π}{3}$)(A>0,ω>0)圖象的相鄰兩條對(duì)稱軸之間的距離為π,且經(jīng)過(guò)點(diǎn)($\frac{π}{3}$,$\frac{\sqrt{3}}{2}$)
(1)求函數(shù)f(x)的解析式;
(2)若角α滿足f(α)+$\sqrt{3}$f(α-$\frac{π}{2}$)=1,α∈(0,π),求α值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}sinxcosx+{sin^2}$x.
(Ⅰ)求函數(shù)f(x)的遞增區(qū)間;
(Ⅱ)△ABC的角A,B,C所對(duì)邊分別是a,b,c,角A的平分線交BC于D,f(A)=$\frac{3}{2}$,AD=$\sqrt{2}$BD=2,求cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知公差不為0的等差數(shù)列{an}與等比數(shù)列$\{{b_n}\},{a_1}=2,{b_n}={a_{2^n}}$,則{bn}的前5項(xiàng)的和為(  )
A.142B.124C.128D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的離心率為$\sqrt{5}$,則拋物線y2=4x的焦點(diǎn)到雙曲線的漸近線的距離是(  )
A.$\frac{{\sqrt{5}}}{10}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{4\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=1n(x+2)+1n(x-2),則f(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在△ABC中,A,B,C的對(duì)邊分別是a,b,c,若c2=acosB+bcosA,a=b=3,則△ABC的周長(zhǎng)為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-|x-\frac{3}{2}|(x≤2)}\\{{e}^{x-2}(-{x}^{2}+8x-12)(x>2)}\end{array}\right.$,若在區(qū)間(1,∞)上存在n(n≥2)個(gè)不同的數(shù)x1,x2,x3,…,xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…$\frac{f({x}_{n})}{{x}_{n}}$成立,則n的取值集合是( 。
A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知O為原點(diǎn),點(diǎn)P為直線2x+y-2=0上的任意一點(diǎn).非零向量$\overrightarrow{a}$=(m,n).若$\overrightarrow{OP}$•$\overrightarrow{a}$恒為定值,則$\frac{m}{n}$=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案