A. | 2 | B. | 4 | C. | 5 | D. | 6 |
分析 由題意,當(dāng)AB是圓的切線時,∠CAB最大,此時CA=4,即可求得點(diǎn)A的橫坐標(biāo)的最大值.
解答 解:由題意,當(dāng)AB是圓的切線時,∠CAB最大,此時CA=4,
即可求得點(diǎn)A的橫坐標(biāo)的最大值.
點(diǎn)A的坐標(biāo)滿足:(x-1)2+(y-1)2=16與y=6-x,
解得x=5或x=1.
∴點(diǎn)A的橫坐標(biāo)的最大值為5.
故選C.
點(diǎn)評 本題主要考查直線與圓的位置關(guān)系的判斷,以及轉(zhuǎn)化與化歸的思想方法.正確理解題意是解答該題的關(guān)鍵,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{π}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{10}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{4\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2+i | B. | 2-i | C. | -1+2i | D. | 1-2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -6 | C. | 15 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2} | B. | {1} | C. | {-2,1} | D. | {-2,0,1} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com