分析 (Ⅰ)由由$\left\{\begin{array}{l}{ρ=2cosθ}\\{ρ=sinθ}\end{array}\right.$,得2cosθ=sinθ,化簡即可得出kOA.
(Ⅱ)設(shè)A的極角為θ,tanθ=2,則sinθ=$\frac{2\sqrt{5}}{5}$,cosθ=$\frac{\sqrt{5}}{5}$,把B(ρ1,θ-$\frac{π}{2}$)代入ρ=2cosθ得ρ1.把C(ρ2,θ+$\frac{π}{2}$)代入ρ=sinθ得ρ2,利用|BC|=ρ1+ρ2,即可得出.
解答 解:(Ⅰ)由$\left\{\begin{array}{l}{ρ=2cosθ}\\{ρ=sinθ}\end{array}\right.$,得2cosθ=sinθ,tanθ=2,
∴kOA=2.
(Ⅱ)設(shè)A的極角為θ,tanθ=2,則sinθ=$\frac{2\sqrt{5}}{5}$,cosθ=$\frac{\sqrt{5}}{5}$,則B(ρ1,θ-$\frac{π}{2}$),代入ρ=2cosθ得ρ1=2cos(θ-$\frac{π}{2}$)=2sinθ=$\frac{4\sqrt{5}}{5}$,
C(ρ2,θ+$\frac{π}{2}$),代代入ρ=sinθ得ρ2=sin(θ+$\frac{π}{2}$)=cosθ=$\frac{\sqrt{5}}{5}$,
∴|BC|=ρ1+ρ2=$\sqrt{5}$.
點(diǎn)評 本題考查了極坐標(biāo)方程的應(yīng)用、斜率計(jì)算、弦長計(jì)算,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈N,x<0 | B. | ?x∉N,x≥0 | C. | ?x∈N,x<0 | D. | ?x∈N,x>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{ab}$≥$\frac{1}{2}$ | B. | $\frac{1}{a2+b2}$≤$\frac{1}{4}$ | C. | $\sqrt{ab}$≥2 | D. | $\frac{1}{a}$+$\frac{1}$≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{14π}{6}+12$ | B. | $\frac{11π}{3}+4$ | C. | $\frac{11π}{6}+12$ | D. | $\frac{11π}{3}+12$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | 2 | C. | $\frac{8}{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $2\sqrt{2}$ | C. | 3 | D. | $3\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com