【題目】已知函數(shù)(是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)討論極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若是的一個(gè)極值點(diǎn),且,證明:.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析
【解析】
(I)求得函數(shù)的導(dǎo)函數(shù),對(duì)分成四種情況進(jìn)行分類(lèi)討論,根據(jù)的單調(diào)區(qū)間,判斷出極值點(diǎn)的個(gè)數(shù).
(II)首先結(jié)合(I)以及判斷出,且,由此求得的表達(dá)式,利用這個(gè)表達(dá)的導(dǎo)數(shù)求得最大值為,由此證得.
(Ⅰ)的定義域?yàn)?/span>,,
①若,則,
所以當(dāng)時(shí),;當(dāng)時(shí),,
所以在上遞減,在遞增.
所以為唯一的極小值點(diǎn),無(wú)極大值,
故此時(shí)有一個(gè)極值點(diǎn).
②若,令,
則,,
當(dāng)時(shí),,
則當(dāng)時(shí),;當(dāng)時(shí),;
當(dāng)時(shí),.
所以-2,分別為的極大值點(diǎn)和極小值點(diǎn),
故此時(shí)有2個(gè)極值點(diǎn).
當(dāng)時(shí),,
且不恒為0,
此時(shí)在上單調(diào)遞增,
無(wú)極值點(diǎn)
當(dāng)時(shí),,
則當(dāng)時(shí),;當(dāng)時(shí),
;當(dāng)時(shí),.
所以,-2分別為的極大值點(diǎn)和極小值點(diǎn),
故此時(shí)有2個(gè)極值點(diǎn).
綜上,當(dāng)時(shí),無(wú)極值點(diǎn);
當(dāng)時(shí),有1個(gè)極值點(diǎn);
當(dāng)或時(shí),有2個(gè)極值點(diǎn).
(Ⅱ)證明:若是的一個(gè)極值點(diǎn),
由(Ⅰ)可知,
又,所以,
且,則,
所以.
令,則,
所以,
故
又因?yàn)?/span>,所以,令,得.
當(dāng)時(shí),,單調(diào)遞增,
當(dāng)時(shí),,單調(diào)遞減,
所以是唯一的極大值點(diǎn),也是最大值點(diǎn),
即,
故,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分形幾何學(xué)是一門(mén)以不規(guī)則幾何形態(tài)為研究對(duì)象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來(lái)得到一系列圖形,如圖1,線(xiàn)段的長(zhǎng)度為,在線(xiàn)段上取兩個(gè)點(diǎn),,使得,以為一邊在線(xiàn)段的上方做一個(gè)正六邊形,然后去掉線(xiàn)段,得到圖2中的圖形;對(duì)圖2中的最上方的線(xiàn)段作相同的操作,得到圖3中的圖形;依此類(lèi)推,我們就得到了以下一系列圖形:
記第個(gè)圖形(圖1為第1個(gè)圖形)中的所有線(xiàn)段長(zhǎng)的和為,則(1)______;(2)如果對(duì),恒成立,那么線(xiàn)段的長(zhǎng)度的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線(xiàn)的方程為.
(1)求曲線(xiàn)的普通方程及直線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)是曲線(xiàn)上的任意一點(diǎn),求點(diǎn)到直線(xiàn)的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求在處的切線(xiàn)方程;
(2)討論的單調(diào)性;
(3)若有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體有8個(gè)不同頂點(diǎn),現(xiàn)任意選擇其中4個(gè)不同頂點(diǎn),然后將它們兩兩相連,可組成平面圖形成空間幾何體.在組成的空間幾何體中,可以是下列空間幾何體中的________.(寫(xiě)出所有正確結(jié)論的編號(hào))
①每個(gè)面都是直角三角形的四面體;
②每個(gè)面都是等邊三角形的四面體;
③每個(gè)面都是全等的直角三角形的四面體;
④有三個(gè)面為等腰直角三角形,有一個(gè)面為等邊三角形的四面體.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:
①是偶函數(shù);②的最大值為;
③在有個(gè)零點(diǎn);④在區(qū)間單調(diào)遞增.
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面 平面,,, .
(1)證明
(2)設(shè)點(diǎn)在線(xiàn)段上,且,若的面積為,求四棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的函數(shù)對(duì)任意的都滿(mǎn)足,當(dāng)≤時(shí),,若函數(shù),且至少有6個(gè)零點(diǎn),則取值范圍是
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列,定義為數(shù)列的一階差分?jǐn)?shù)列,其中.
(1)若,試斷是否是等差數(shù)列,并說(shuō)明理由;
(2)若證明是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(3)對(duì)(2)中的數(shù)列,是否存在等差數(shù)列,使得對(duì)一切都成立,若存在,求出數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com