14.如圖,在三棱柱ABC-A1B1C1中,已知AB⊥側(cè)面BB1C1C,CC1=CA,∠BCC1=∠BCA.
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)若BC=2,∠BCC1=$\frac{π}{3}$,求點B到平面A1B1C的距離.

分析 (Ⅰ)根據(jù)本題條件,需要證明BC1⊥AB,由AB⊥側(cè)面BB1C1C就可以解決;而要證明C1B⊥BC,則需要通過解三角形來證明.
(Ⅱ)利用等體積方法,求點B到平面A1B1C的距離.

解答 (Ⅰ)證明:∵CC1=CA,∠BCC1=∠BCA,BC=BC,
∴△ABC≌△C1BC,
∴∠C1BC=∠ABC=90°,∴BC⊥BC1,
∵AB⊥側(cè)面BB1C1C,BC1?面BB1C1C,
∴BC1⊥AB,
∵AB∩BC=B,∴BC1⊥平面ABC;
(Ⅱ)解:若BC=2,∠BCC1=$\frac{π}{3}$,由(Ⅰ)可知CC1=CA=4,AB=2$\sqrt{3}$,
∴${S}_{△{B}_{1}BC}$=$\frac{1}{2}×2×4×\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,B1C=$\sqrt{4+16-2×2×4×(-\frac{1}{2})}$=2$\sqrt{7}$,
∴由等體積可得$\frac{1}{3}×2\sqrt{3}×2\sqrt{3}=\frac{1}{3}×\frac{1}{2}×2\sqrt{7}×2\sqrt{3}h$,
∴h=$\frac{2\sqrt{21}}{7}$,即點B到平面A1B1C的距離為$\frac{2\sqrt{21}}{7}$.

點評 本題考查線面垂直、線線垂直,考查錐體體積的計算,考查學(xué)生分析解決問題的能力,正確運用線面垂直的判定定理是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x-3|
(1)解不等式:f(x)+f(x+1)≤2;
(2)若a<0,求證:f(ax)-f(3a)≥af(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=lg(1+x)-lg(1-x),則函數(shù)f(x)是( 。
A.偶函數(shù),且在(0,1)上是減函數(shù)B.奇函數(shù),且在(0,1)上是減函數(shù)
C.偶函數(shù),且在(0,1)上是增函數(shù)D.奇函數(shù),且在(0,1)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若變量x,y滿足約束條件$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤4}\\{2x-y-4≤0}\end{array}\right.$,則x2+y2-8x-4y的最小值為4-8$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y-1≥0}\\{y≥\frac{1}{2}x}\\{y≤3}\end{array}\right.$,當目標函數(shù)z=ax+by(a>0,b>0)在該約束條件下取得最小值1時,則$\frac{1}{2a}$+$\frac{2}$的最小值為( 。
A.2$\sqrt{2}$B.4+2$\sqrt{2}$C.3+$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}滿足a1=1,an+1an+Sn=5,則a2=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.數(shù)列{an}的通項公式為an=nsin$\frac{nπ}{2}$+(-1)n,其前n項和為Sn,則S2017=-3026.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知M,N分別為長方體ABCD-A1B1C1D1的棱AB,A1B1的中點,若AB=2$\sqrt{2}$,AD=AA1=2,則四面體C1-DMN的外接球的表面積為13π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.復(fù)數(shù)z滿足zi=3+4i,若復(fù)數(shù)$\overline{z}$對應(yīng)的點為M,則點M到直線3x-y+1=0的距離為( 。
A.$\frac{4\sqrt{10}}{5}$B.$\frac{7\sqrt{10}}{5}$C.$\frac{8\sqrt{10}}{5}$D.$\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊答案