【題目】Sn為數(shù)列{an}的前n項(xiàng)和,已知Sn+1=λSn+1(λ是大于0的常數(shù)),且a1=1,a3=4.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=nan , 求數(shù)列{bn}的前n項(xiàng)和.

【答案】解:(Ⅰ)由Sn+1=λSn+1可知 當(dāng)n≥2時(shí),Sn=λSn1+1. 作差可得an+1=λan , 即n≥2時(shí)
又a1=1,故a2=λa1
∴數(shù)列{an}是等比數(shù)列.
由于a3=a1λ2=4,λ>0,解得λ=2.
數(shù){an}的通項(xiàng)公式為:
(Ⅱ)由 ,可知
設(shè)數(shù)列{bn}前n項(xiàng)和為Tn ,
,①
,②
① ﹣②得: = =2n﹣1﹣n2n

【解析】(Ⅰ)由已知數(shù)列遞推式可得當(dāng)n≥2時(shí),Sn=λSn1+1.與原遞推式作差可得an+1=λan , 即n≥2時(shí) .驗(yàn)證a2=λa1 , 可得數(shù)列{an}是等比數(shù)列.結(jié)合已知求得λ值,則數(shù)列{an}的通項(xiàng)公式可求;(Ⅱ)把(Ⅰ)中求得的通項(xiàng)公式代入bn=nan , 整理后利用錯(cuò)位相減法求數(shù)列{bn}的前n項(xiàng)和.
【考點(diǎn)精析】掌握數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式是解答本題的根本,需要知道數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,若不等式f(x3﹣x2+a)+f(﹣x3+x2﹣a)≥2f(1)對x∈[0,1]恒成立,則實(shí)數(shù)a的取值范圍為( )
A.[ ,1]
B.[﹣ ,1]
C.[1,3]
D.(﹣∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,并在兩坐標(biāo)系中取相同的長度單位,若直線l的極坐標(biāo)方程是ρsin(θ+ )=2 ,且點(diǎn)P是曲線C: (θ為參數(shù))上的一個(gè)動(dòng)點(diǎn).
(Ⅰ)將直線l的方程化為直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)P到直線l的距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校的學(xué)生記者團(tuán)由理科組和文科組構(gòu)成,具體數(shù)據(jù)如下表所示:

組別

理科

文科

性別

男生

女生

男生

女生

人數(shù)

4

4

3

1

學(xué)校準(zhǔn)備從中選出4人到社區(qū)舉行的大型公益活動(dòng)進(jìn)行采訪,每選出一名男生,給其所在小組記1分,每選出一名女生則給其所在小組記2分,若要求被選出的4人中理科組、文科組的學(xué)生都有.
(Ⅰ)求理科組恰好記4分的概率?
(Ⅱ)設(shè)文科男生被選出的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,4sinA+3cosB=5,4cosA+3sinB=2 ,則角C等于(
A.150°或30°
B.120°或60°
C.30°
D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l: (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的坐標(biāo)方程為ρ=2cosθ.
(1)將曲線C的極坐標(biāo)方程化為直坐標(biāo)方程;
(2)設(shè)點(diǎn)M的直角坐標(biāo)為(5, ),直線l與曲線C的交點(diǎn)為A,B,求|MA||MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C1 一焦點(diǎn)與拋物線y2=8x的焦點(diǎn)F相同,若拋物線y2=8x的焦點(diǎn)到雙曲線C1的漸近線的距離為1,P為雙曲線左支上一動(dòng)點(diǎn),Q(1,3),則|PF|+|PQ|的最小值為(
A.4
B.4
C.4
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x+a|+|x﹣ |(x∈R,實(shí)數(shù)a<0).
(Ⅰ)若f(0)> ,求實(shí)數(shù)a的取值范圍;
(Ⅱ)求證:f(x)≥

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分圖象如圖所示,為了得到g(x)=Asinωx的圖象,只需將函數(shù)y=f(x)的圖象(
A.向左平移 個(gè)單位長度
B.向左平移 個(gè)單位長度
C.向右平移 個(gè)單位長度
D.向右平移 個(gè)單位長度

查看答案和解析>>

同步練習(xí)冊答案