19.已知正數(shù)a,b滿足a2+b2=1,則ab的最大值為( 。
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 利用基本不等式的性質(zhì)即可得出.

解答 解:∵正數(shù)a,b滿足a2+b2=1,
則ab≤$\frac{{a}^{2}+^{2}}{2}$=$\frac{1}{2}$,當且僅當a=b=$\frac{\sqrt{2}}{2}$時取等號.
故選:C.

點評 本題考查了基本不等式的性質(zhì),考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.計算:$\underset{lim}{x→0}(1+2x)^{\frac{1}{x}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于(  )
A.24+6πcm3B.24+12πcm3C.48+12πcm3D.96+12πcm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知向量$\overrightarrow a$=($\sqrt{3}$sin3x,-y),$\overrightarrow b$=(m,cos3x-m)(m∈R),且$\overrightarrow a$+$\overrightarrow b$=$\overrightarrow 0$.設y=f(x).
(1)求f(x)的表達式,并求函數(shù)f(x)在[${\frac{π}{18}$,$\frac{π}{3}}$]上圖象最低點M的坐標.
(2)在△ABC中,f(A)=-$\sqrt{3}$,且A>$\frac{4}{9}$π,D為邊BC上一點,AC=$\sqrt{3}$DC,BD=2DC,且AD=2$\sqrt{2}$,求線段DC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.觀察下列(如圖)數(shù)表規(guī)律,則數(shù)2007的箭頭方向是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知$tanα=\frac{1}{2},sin(α+β)=-\frac{{\sqrt{2}}}{10}$,其中α,β∈(0,π).
(1)求cosβ的值;
(2)求α-β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知向量$\overrightarrow a≠\overrightarrow e$,$|\overrightarrow e|=1$,對任意t∈R,恒有$|\overrightarrow a-t\overrightarrow e|≥|\overrightarrow a-2\overrightarrow e|$,則( 。
A.$\overrightarrow a⊥\overrightarrow e$B.$\overrightarrow a⊥(\overrightarrow a-2\overrightarrow e)$C.$\overrightarrow e⊥(\overrightarrow a-2\overrightarrow e)$D.$(\overrightarrow a+2\overrightarrow e)⊥(\overrightarrow a-2\overrightarrow e)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知集合A={log2x,4,8},B={4,5}.若A∪B={1,4,5,8},則實數(shù)x的值為2,A∩B={4};令U=A∪B,則∁UA={5}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設函數(shù)f(x)=x2+3x-2,則 $\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=(  )
A.5B.-5C.10D.-10

查看答案和解析>>

同步練習冊答案