【題目】已知函數(shù).

1)若函數(shù) 處的切線方程為,求實數(shù)的值;

2)設,當時,求的最小值;

3)求證:.

【答案】(1) 實數(shù)的值為;(2) 時,的最小值為時, 的最小值為時, 的最小值為;(3)證明如下.

【解析】

(1)求出切點縱坐標即可求解;

(2)先求函數(shù)的單調(diào)性,再討論所給的動區(qū)間的位置即可得出;

(3)對所要證明的不等式兩邊取對數(shù),構(gòu)造函數(shù)轉(zhuǎn)化為恒成立問題即可證明.

(1) 由題意可知,.

(2) ,得;

,得,

時,上單調(diào)遞增,

所以的最小值為

時,上單調(diào)遞減,

所以的最小值為

時,上單調(diào)遞減,在上單調(diào)遞增,

所以的最小值為.

綜上所述,當時,的最小值為

時, 的最小值為

時, 的最小值為.

(3)要證,即證,

只需證,即證對任意的恒成立.

,當時,恒成立,

上單調(diào)遞增,在上的最大值為

對任意的恒成立,得證.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,下面結(jié)論正確的是(

A.,且的最小值為π,則ω=2

B.存在ω(1,3),使得f(x)的圖象向右平移個單位長度后得到的圖象關(guān)于y軸對稱

C.f(x)上恰有7個零點,則ω的取值范圍是

D.f(x)上單調(diào)遞增,則ω的取值范圍是(0,]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在其定義域內(nèi)有兩個不同的極值點.

(1)求的取值范圍;

(2)記兩個極值點為,且,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】千百年來,我國勞動人民在生產(chǎn)實踐中根據(jù)云的形狀、走向、速度、厚度、顏色等的變化,總結(jié)了豐富的看云識天氣的經(jīng)驗,并將這些經(jīng)驗編成諺語,如天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學為了驗證日落云里走,雨在半夜后,觀察了所在地區(qū)A100天日落和夜晚天氣,得到如下列聯(lián)表:

夜晚天氣

日落云里走

下雨

未下雨

出現(xiàn)

25

5

未出現(xiàn)

25

45

臨界值表

P

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

并計算得到,下列小波對地區(qū)A天氣判斷不正確的是(

A.夜晚下雨的概率約為

B.未出現(xiàn)日落云里走夜晚下雨的概率約為

C.的把握認為“‘日落云里走是否出現(xiàn)當晚是否下雨有關(guān)

D.出現(xiàn)日落云里走,有的把握認為夜晚會下雨

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:

①若樣本數(shù)據(jù)的方差為,則數(shù)據(jù)的方差為;

②“平面向量的夾角為銳角,則”的逆命題為真命題;

③命題“,均有”的否定是“,均有”;

是直線與直線平行的必要不充分條件.

其中正確的命題個數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在測試中,客觀題難題的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級120名學生進行一次測試,共5道客觀題.測試前根據(jù)對學生的了解,預估了每道題的難度,如下表所示:

測試后,從中隨機抽取了10名學生,將他們編號后統(tǒng)計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):

(1)根據(jù)題中數(shù)據(jù),將抽樣的10名學生每道題實測的答對人數(shù)及相應的實測難度填入下表,并估計這120名學生中第5題的實測答對人數(shù);

(2)從編號為1到5的5人中隨機抽取2人,求恰好有1人答對第5題的概率;

(3)定義統(tǒng)計量,其中為第題的實測難度, 為第題的預估難度(.規(guī)定:若,則稱該次測試的難度預估合理,否則為不合理.判斷本次測試的難度預估是否合理.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=exx2ax2+axaR.

1)當a1時,求fx)的極值;

2)若fx)恰有兩個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,.

1)討論函數(shù)的單調(diào)性;

2)證明:函數(shù)在定義域上只有一個零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,且.

(1)求證:數(shù)列為等比數(shù)列;

2)設數(shù)列的前項和為,求證: 為定值;

3)判斷數(shù)列中是否存在三項成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案