【題目】已知奇函數(shù)f(x)=a-(a∈R,e為自然對數(shù)的底數(shù)).
(1)判定并證明f(x)的單調(diào)性;
(2)若對任意實(shí)數(shù)x,f(x)>m2-4m+2恒成立,求實(shí)數(shù)m的取值范圍.
【答案】(1)上的遞增函數(shù),證明見解析;(2).
【解析】
(1)用單調(diào)性定義證明;
(2)先用奇函數(shù)性質(zhì)求出a=1,再根據(jù)單調(diào)性求出函數(shù)最值,最后用最值使不等式成立即可.
解:(1)f(x)是R上的單調(diào)遞增函數(shù).
證明:因f(x)的定義域?yàn)?/span>R,任取x1,x2∈R且x1<x2.
則f(x2)-f(x1)=-=.
∵y=ex為增函數(shù),∴>>0,∴+1>0,+1>0.
∴f(x2)-f(x1)>0,∴f(x2)>f(x1),
故f(x)是R上的遞增函數(shù).
(2)∵f(x)為奇函數(shù),∴f(-x)=-f(x),
∴a-=-a+,∴2a=2,∴a=1,
∴f(x)=1-,
令t=ex+1,∵ex>0,∴t>1,
又g(t)=1-在(1,+∞)上為增函數(shù),
∴-1<g(t)<1,即-1<f(x)<1,
當(dāng)f(x)>m2-4m+2對任意實(shí)數(shù)x恒成立,
有m2-4m+2≤-1,即m2-4m+3≤0,
∴1≤m≤3,
故實(shí)數(shù)m的取值范圍是[1,3].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin2x-2sin2x-a.
①若f(x)=0在x∈R上有解,則a的取值范圍是______;
②若x1,x2是函數(shù)y=f(x)在[0,]內(nèi)的兩個(gè)零點(diǎn),則sin(x1+x2)=______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面使用類比推理正確的是( )
A. 由“a(b+c)=ab+ac”類比推出“cos(α+β)=cosα+cosβ”
B. 由“若3a<3b,則a<b”類比推出“若ac<bc,則a<b”
C. 由“平面中垂直于同一直線的兩直線平行”類比推出“空間中垂直于同一平面的兩平面平行”
D. 由“等差數(shù)列{an}中,若a10=0,則a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)”類比推出“在等比數(shù)列{bn}中,若b9=1,則有b1b2…bn=b1b2…b17-n(n<17,n∈N*)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|(a>-2)的圖象過點(diǎn)(2,1).
(1)求實(shí)數(shù)a的值;
(2)設(shè),在如圖所示的平面直角坐標(biāo)系中作出函數(shù)y=g(x)的簡圖,并寫出(不需要證明)函數(shù)g(x)的定義域、奇偶性、單調(diào)區(qū)間、值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x+ax2+b·ln x,曲線y=f(x)過P(1,0),且在P點(diǎn)處的切線斜率為2.
(1)求a,b的值;
(2)證明:f(x)≤2x-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+2ax+3-b(a≠0,b>0)在[0,3]上有最小值2,最大值17,函數(shù)g(x)=.
(l)求函數(shù)g(x)的解析式;
(2)證明:對任意實(shí)數(shù)m,都有g(m2+2)≥g(2|m|+l);
(3)若方程g(|log2x-1|)+3k(-1)=0有四個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求f(x)的最小值;
(2)若方程x2+1=-x3+2x2+mx(x>0)有兩個(gè)正根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sin θ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3-6x+5,x∈R.
(1)求函數(shù)f(x)的極值;(2)若關(guān)于x的方程f(x)=a有三個(gè)不同的實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com