為了保障幼兒園兒童的人身安全,國家計(jì)劃在甲、乙兩省試行政府規(guī)范購置校車方案,計(jì)劃若干時(shí)間內(nèi)(以月為單位)在兩省共新購1000輛校車.其中甲省采取的新購方案是:本月新購校車10輛,以后每月的新購量比上一月增加50%;乙省采取的新購方案是:本月新購校車40輛,計(jì)劃以后每月比上一月多新購m輛.
(1)求經(jīng)過n個(gè)月,兩省新購校車的總數(shù)S(n);
(2)若兩省計(jì)劃在3個(gè)月內(nèi)完成新購目標(biāo),求m的最小值.
(1);(2)m的最小值為278.

試題分析:本題主要考查實(shí)際問題、等差等比數(shù)列的前n項(xiàng)和公式、不等式的解法等數(shù)學(xué)知識,考查學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,考查學(xué)生分析問題解決問題的能力和計(jì)算能力.第一問,通過對題意的分析可知甲方案能構(gòu)成等比數(shù)列,而乙方案能構(gòu)成等差數(shù)列,利用等差等比數(shù)列的前n項(xiàng)和公式分別求和,再相加即可;第二問,利用第一問的結(jié)論,得出,直接解不等式即可得到m的取值范圍,并寫出最小值.
試題解析:(1)設(shè)an,bn分別為甲省,乙省在第n月新購校車的數(shù)量.依題意,{an}是首項(xiàng)為10,公比為1+50%=的等比數(shù)列;{bn}是首項(xiàng)為40,公差為m的等差數(shù)列.{an}的前n項(xiàng)和,{bn}的前n項(xiàng)和.所以經(jīng)過n個(gè)月,兩省新購校車的總數(shù)為S(n)=

. (8分)
(2)若計(jì)劃在3個(gè)月內(nèi)完成新購目標(biāo),則S(3)≥1000,
所以,
解得m≥277.5.又m∈N*,所以m的最小值為278.(13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列中,.從數(shù)列中選出項(xiàng)并按原順序組成的新數(shù)列記為,并稱為數(shù)列項(xiàng)子列.例如數(shù)列、、的一個(gè)項(xiàng)子列.
(1)試寫出數(shù)列的一個(gè)項(xiàng)子列,并使其為等差數(shù)列;
(2)如果為數(shù)列的一個(gè)項(xiàng)子列,且為等差數(shù)列,證明:的公差滿足
(3)如果為數(shù)列的一個(gè)項(xiàng)子列,且為等比數(shù)列,證明:
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)等差數(shù)列的公差為,且.若設(shè)是從開始的前項(xiàng)數(shù)列的和,即,,如此下去,其中數(shù)列是從第開始到第)項(xiàng)為止的數(shù)列的和,即
(1)若數(shù)列,試找出一組滿足條件的,使得: ;
(2)試證明對于數(shù)列,一定可通過適當(dāng)?shù)膭澐郑顾玫臄?shù)列中的各數(shù)都為平方數(shù);
(3)若等差數(shù)列.試探索該數(shù)列中是否存在無窮整數(shù)數(shù)列
,使得為等比數(shù)列,如存在,就求出數(shù)列;如不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)對,設(shè),若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為,且成等比數(shù)列,當(dāng)時(shí),
(1)求證:當(dāng)時(shí),成等差數(shù)列;
(2)求的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)等差數(shù)列的前項(xiàng)和為,若,,則正整數(shù)=       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等差數(shù)列的前項(xiàng)和為,若,則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比為q的等
比數(shù)列,a2,a4,a6成公差為1的等差數(shù)列,則q的最小值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列{an}中
(1)已知a4+a14=2,則S17=________;
(2)已知a11=10,則S21=________;
(3)已知S11=55,則a6=________;
(4)已知S8=100,S16=392,則S24=________.

查看答案和解析>>

同步練習(xí)冊答案