17.已知函數(shù)f(x)=9x
(1)求函數(shù)f-1(3x+6);
(2)解方程:f(x)=f(f-1(3x+6)).

分析 (1)求出函數(shù)的反函數(shù),代入表達(dá)式化簡(jiǎn)求解即可.
(2)列出方程,化簡(jiǎn)求解即可.

解答 解:(1)函數(shù)f(x)=9x
可得f-1(x)=$\frac{1}{2}$log3x.
函數(shù)f-1(3x+6)=$\frac{1}{2}$log3(3x+6);
(2)f(x)=f(f-1(3x+6)).
9x=${9}^{\frac{1}{2}lo{g}_{3}({3}^{x}+6)}$,
即:x=$\frac{1}{2}$log3(3x+6);
log332x=log3(3x+6);
可得32x=3x+6,
解得3x=-2(舍去).3x=3.
解得x=1,
經(jīng)驗(yàn)證,x=1是方程的解.

點(diǎn)評(píng) 本題考查函數(shù)的反函數(shù)以及方程的解的求法,指數(shù)與對(duì)數(shù)方程的解法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知x,y滿足x2+y2=1,則$\frac{y-2}{x-1}$的最小值為( 。
A.$\frac{1}{2}$B.2C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若函數(shù)f(x)=$\left\{\begin{array}{l}{6^x}-m,\begin{array}{l}{x<1}\end{array}\\{x^2}-3mx+2{m^2},x≥1\end{array}$恰有2個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是[$\frac{1}{2}$,1)∪[6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x)的定義域?yàn)镽,f(x)=$\left\{\begin{array}{l}{x,0≤x≤1}\\{(\frac{1}{2})^{x}-1,-1≤x<0}\end{array}\right.$,且對(duì)任意的x∈R都有f(x+1)=f(x-1),若在區(qū)間[-1,3]上函數(shù)g(x)=f(x)-mx-m恰有三個(gè)不同零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.(0,$\frac{1}{4}$]B.($\frac{1}{4}$,$\frac{1}{2}$)C.(0,$\frac{1}{2}$]D.[$\frac{1}{4}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=cos(x-$\frac{π}{2}$)-log5x的零點(diǎn)個(gè)數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.己知a>2,p=a+$\frac{1}{a-2}$,q=2${\;}^{-{a}^{2}+4a-2}$,則( 。
A.p>qB.p<qC.p≥qD.p≤q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.定義:區(qū)間[x1,x2](x1<x2)的長(zhǎng)度為x2-x1,若函數(shù)y=|log2$\frac{x}{2}$|的定義域?yàn)閇m,n],值域?yàn)閇0,2],則區(qū)間[m,n]長(zhǎng)度的最小值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=ex(x2-3).
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知定義在[-$\frac{π}{2}$,$\frac{π}{2}$]的函數(shù)f(x)=sinx(cosx+1)-ax,若y=f(x)僅有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{2}{π}$,2]B.(-∞,$\frac{2}{π}$)∪[2,+∞)C.[-$\frac{1}{2}$,$\frac{2}{π}$)D.(-∞,-$\frac{1}{2}$]∪($\frac{2}{π}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案