直線l與球O有且只有一個公共點P,從直線l出發(fā)的兩個半平面截球O的兩個截面圓的半徑分別為1和.若二面角的平面角為150°,則球O的表面積為
A.B.C.D.
C

試題分析:欲求球O的表面積,只需求出球O的半徑,根據(jù)題意OP長即球O的半徑,再根據(jù)球心與截面圓圓心連線垂直截面圓,可考慮連接球心與兩個截面圓圓心,利用得到的圖形中的一些邊角關系,求出R,再利用球的表面積公式即可求出球O的表面積.
解:設平面α,β截球O的兩個截面圓的圓心分別為A,B,
連接PA,PB,與球交點為C,D根據(jù)題意在四邊形OAPB中,∠APB=150°,∠OAP=∠OBP=90°
∴∠AOB=30°,PA=1,PB=,那么小圓的直徑分別是2,和2,那么結(jié)合角∠APB=150°,運用余弦定理得到得到為CD=2,而球的半徑就是三角形PAB的外接圓的半徑,則利用正弦定理可知為球的半徑為2,因此球的表面積為,故選C.
點評:本題考查了球的截面圓的性質(zhì),以及二面角的平面角的找法,綜合性較強,做題時要認真分析,找到聯(lián)系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐P -ABC中,點P在平面ABC上的射影D是AC的中點.BC ="2AC=8,AB" =

(I )證明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知所在的平面,AB是⊙的直徑,,是⊙上一點,且,分別為中點。

(1)求證:平面;
(2)求證:
(3)求三棱錐-的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分) 本題共有2個小題,第1小題滿分6分,第2小題滿分6分.
如圖已知四棱錐的底面是邊長為6的正方形,側(cè)棱的長為8,且垂直于底面,點分別是的中點.求

(1)異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,是棱長為1的正方體,四棱錐中,平面,。

(Ⅰ)求證:
(Ⅱ)求直線與平面所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知直三棱柱中,△為等腰直角三角形,∠ =,且,、分別為、的中點.

(1)求證:∥平面;
(2)求證:⊥平面
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩個正四棱錐P-ABCD與Q-ABCD的高分別為1和2,AB=4.

(Ⅰ)證明PQ⊥平面ABCD;
(Ⅱ)求異面直線AQ與PB所成的角;
(Ⅲ)求點P到平面QAD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)如圖所示,四棱錐中,底面是邊長為2的菱形,是棱上的動點.

(Ⅰ)若的中點,求證://平面;
(Ⅱ)若,求證:;
(III)在(Ⅱ)的條件下,若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)如圖,在多面體ABCDEF中,底面ABCD是 平行四邊形,AB=2EF,EFAB,,HBC的中點.求證:FH∥平面EDB.

查看答案和解析>>

同步練習冊答案