【題目】如圖,三棱柱中,側(cè)棱垂直底面,是棱的中點(diǎn)

(Ⅰ)證明:平面平面

(Ⅱ)平面分此棱柱為兩部分,求這兩部分體積比

【答案】(I)證明見解析;(II)

【解析】

試題分析:(I)易證得平面,再由面面垂直的判定定理即可證得平面平面;(II)設(shè)棱錐的體積為,易求得三棱術(shù)的體積為,于是得,從而可得答案.

試題解析: I)由題意知BCCC1,BCAC,CC1∩AC=C,

BC平面ACC1A1,又DC1平面ACC1A1,

DC1BC.

由題設(shè)知A1DC1=ADC=45°,

∴∠CDC1=90°,即DC1DC,又DC∩BC=C,

DC1平面BDC,又DC1平面BDC1,

平面BDC1平面BDC;

II)設(shè)棱錐B﹣DACC1的體積為V1,AC=1,由題意得V1=××1×1=,

又三棱柱ABC﹣A1B1C1的體積V=1,

(V﹣V1):V1=1:1,

平面BDC1分此棱柱兩部分體積的比為1:1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).若的一個(gè)零點(diǎn)附近的函數(shù)值如下所示,請(qǐng)用二分法求出方程的一個(gè)正實(shí)數(shù)解的近似值(精確度0.1).,,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)定點(diǎn)P(-2,1)作直線l分別與x、y軸交于A、B兩點(diǎn),

(1)求經(jīng)過(guò)點(diǎn)P且在兩坐標(biāo)軸上的截距相等的直線l方程.

(2)求使面積為4時(shí)的直線l方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)yx有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在(0, ]上是減函數(shù),在[,+∞)上是增函數(shù).

(1)已知f(x)=x∈[0,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域;

(2)對(duì)于(1)中的函數(shù)f(x)和函數(shù)g(x)=-x-2a,若對(duì)任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),其到函數(shù)為,數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上.

(I)求數(shù)列的通項(xiàng)公式;

)設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正整數(shù) , 是等腰三角形的三邊長(zhǎng),并且,這樣的三角形有( )個(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),證明: 在定義域上為減函數(shù);

(Ⅱ)若.討論函數(shù)的零點(diǎn)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把1、2、3、4、5這五個(gè)數(shù)字組成無(wú)重復(fù)數(shù)字的五位數(shù),并把它們由小大到的順序排成一個(gè)數(shù)列.

(Ⅰ)求是這個(gè)數(shù)列的第幾項(xiàng);

(Ⅱ)求這個(gè)數(shù)列的第96項(xiàng);

(Ⅲ)求這個(gè)數(shù)列的所有項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)已知橢圓與拋物線有相同焦點(diǎn)

)求橢圓的標(biāo)準(zhǔn)方程;

)已知直線過(guò)橢圓的另一焦點(diǎn),且與拋物線相切于第一象限的點(diǎn),設(shè)平行的直線交橢圓兩點(diǎn),當(dāng)面積最大時(shí),求直線的方程

查看答案和解析>>

同步練習(xí)冊(cè)答案