A. | m≤-$\frac{5}{4}$ | B. | m≤2 | C. | m≤$\frac{3}{4}$ | D. | m≤0 |
分析 對?x1∈[1,2],?x2∈[1,4],使得f(x1)≥g(x2)等價于f(x)min≥g(x)min即可;
解答 解:對?x1∈[1,2],?x2∈[1,4],使得f(x1)≥g(x2)等價于f(x)min≥g(x)min;
f(x)=$\frac{x+1}{{x}^{2}}$=$\frac{1}{x}$+$\frac{1}{{x}^{2}}$,換元令t=$\frac{1}{x}$∈[$\frac{1}{2}$,1],h(t)=t+t2知h(t)在(-$\frac{1}{2}$,+∞)上單調(diào)遞增;
所以f(x)min=h($\frac{1}{2}$)=$\frac{3}{4}$;
g(x)=log2x+m,在x∈[1,4]上為單調(diào)增函數(shù),故g(x)min=g(1)=m;
所以m≤$\frac{3}{4}$,
故選:C.
點評 本題主要考查了函數(shù)的等價轉化思想,以及函數(shù)求值域的方法,屬中等題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 2 | C. | 3 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若α⊥β,l?α,n?β,則l⊥n | B. | 若l⊥α,l∥β,則α⊥β | ||
C. | 若l⊥n,m⊥n,則l∥n | D. | 若α⊥β,l?α,則l⊥β |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com