A. | 100$\sqrt{2}$米 | B. | 50($\sqrt{3}$+1)米 | C. | $100({\sqrt{3}+1})$米 | D. | 200米 |
分析 直角△ABC與直角△ABD有公共邊AB,若設(shè)AB=x,則在直角△ABC與直角△ABD就滿足解直角三角形的條件,可以用x表示出BC與BD的長,根據(jù)BD-BC=CD,即可列方程求解.
解答 解:設(shè)AB=x米,在直角△ACB中,∠ACB=45°,
∴BC=AB=x米.
在直角△ABD中,∠D=30°,BD=$\sqrt{3}$x,
∵BD-BC=CD,
∴$\sqrt{3}$x-x=200,
解得:x=100($\sqrt{3}$+1).
故選C.
點(diǎn)評 本題主要考查了解直角三角形的方法,解決的關(guān)鍵是注意到兩個(gè)直角三角形有公共的邊,利用公共邊表示其它的量,從而把問題轉(zhuǎn)化為方程問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{-\frac{5}{2},-1})∪[2,5)$ | B. | $[{-1,-\frac{2}{3}})∪[5,10)$ | C. | $({-\frac{4}{3},-1}]∪[5,10)$ | D. | $[{-\frac{4}{3},-1}]∪[5,10)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\frac{9}{4}$ | C. | 2 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{27}$ | B. | $\frac{1}{3}$ | C. | $\frac{10}{27}$ | D. | $\frac{11}{27}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{5}-\frac{2}{5}$i | B. | $-\frac{1}{5}+\frac{2}{5}i$ | C. | $\frac{1}{5}+\frac{2}{5}$i | D. | $\frac{1}{5}-\frac{2}{5}$i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com