18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(5-a)x-3,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$為R上的增函數(shù),則實(shí)數(shù)a的取值范圍是[2,5).

分析 若函數(shù)f(x)=$\left\{\begin{array}{l}{(5-a)x-3,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$為R上的增函數(shù),則$\left\{\begin{array}{l}5-a>0\\ a>1\\ 5-a-3≤0\end{array}\right.$,解得實(shí)數(shù)a的取值范圍.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{(5-a)x-3,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$為R上的增函數(shù),
∴$\left\{\begin{array}{l}5-a>0\\ a>1\\ 5-a-3≤0\end{array}\right.$,
解得a∈[2,5),
故答案為:[2,5)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)的單調(diào)性,正確理解分段函數(shù)單調(diào)的含義,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}({x≥2})\\ f({x+1})({x<2})\end{array}$,則f(log23)=( 。
A.6B.3C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在空間直角坐標(biāo)系中,若A(0,2,5),B(-1,3,3),則|AB|=(  )
A.$\sqrt{10}$B.3C.$\sqrt{7}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知圓C經(jīng)過(guò)點(diǎn)A(0,2),B(2,0),圓C的圓心在圓x2+y2=2的內(nèi)部,且直線3x+4y+5=0被圓C所截得的弦長(zhǎng)為$2\sqrt{3}$.點(diǎn)P為圓C上異于A,B的任意一點(diǎn),直線PA與x軸交于點(diǎn)M,直線PB與y軸交于點(diǎn)N.
(1)求圓C的方程;
(2)求證:|AN|•|BM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.計(jì)算:${3^{{{log}_3}4}}$-${27^{\frac{2}{3}}}$+lg0.01+(0.75)-1+ln$\frac{1}{e}$=-$\frac{20}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知二次函數(shù)f(x)=x2-2ax+1,a∈R;
(1)若函數(shù)f(x)在區(qū)間(-1,2)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若不等式f(x)>0對(duì)任x∈R上恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)的最小值為-2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知橢圓的兩個(gè)焦點(diǎn)分別是點(diǎn)F1 (-1,0),F(xiàn)2 (1,0),P為橢圓上一點(diǎn),且F1F2是PF1和PF2的等差中項(xiàng),則該橢圓方程是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(x2-ax+b).
(Ⅰ) 若函數(shù)f(x)的定義域?yàn)椋?∞,2)∪(3,+∞),求實(shí)數(shù)a,b的值;
(Ⅱ)  若f(-2)=-3且f(x)在(-∞,-1]上為增函數(shù),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若“?x∈[$\frac{1}{2}$,2],使得2x2-λx+1<0成立”是假命題,則實(shí)數(shù)λ的取值范圍為( 。
A.(-∞,2$\sqrt{2}$]B.[2$\sqrt{2}$,3]C.[-2$\sqrt{2}$,3]D.λ=3

查看答案和解析>>

同步練習(xí)冊(cè)答案