11.若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(Ⅰ)求a,b;
(Ⅱ)求f(log2x)的最小值及相應(yīng) x的值;
(Ⅲ)若f(log2x)>f(1)且log2f(x)<f(1),求x的取值范圍.

分析 (I)代入利用對(duì)數(shù)的運(yùn)算性質(zhì)即可得出.
(II)利用二次函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得出.
(Ⅲ)由題意知:$\left\{\begin{array}{l}{(lo{g}_{2}x)^{2}-lo{g}_{2}x+2>2}\\{lo{g}_{2}({x}^{2}-x+2)<2}\end{array}\right.$,利用一元二次不等式的解法、對(duì)數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:(Ⅰ)∵f (x)=x2-x+b,∴f (log2a)=(log2a)2-loga+b=b,
∴l(xiāng)og2a=1,∴a=2.
又∵log2f(a)=2,f(a)=4.∴a2-a+b=4,∴b=2.
(Ⅱ)由(Ⅰ)得f (x)=x2-x+2
∴f (log2x)=(log2x)2-log2x+2=(log2x-$\frac{1}{2}$)2+$\frac{7}{4}$,
∴當(dāng)log2x=$\frac{1}{2}$,即x=$\sqrt{2}$時(shí),f (log2x)有最小值$\frac{7}{4}$.
(Ⅲ)由題意知:$\left\{\begin{array}{l}{(lo{g}_{2}x)^{2}-lo{g}_{2}x+2>2}\\{lo{g}_{2}({x}^{2}-x+2)<2}\end{array}\right.$,
解得$\left\{\begin{array}{l}{lo{g}_{2}x<0或lo{g}_{2}x>1}\\{0<{x}^{2}-x+2<4}\end{array}\right.$,
∴$\left\{\begin{array}{l}{0<x<1或x>2}\\{-1<x<2}\end{array}\right.$,
∴0<x<1.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì)、二次函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性、一元二次不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,圓C的方程為(x-$\sqrt{3}$)2+(y+1)2=9,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線OP:θ=$\frac{π}{6}$(p∈R)與圓C交于點(diǎn)M,N,求線段MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)y=mx+b是R上的減函數(shù),則( 。
A.m≥0B.m≤0C.m>0D.m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列對(duì)應(yīng)關(guān)系:
①A={1,4,9},B={-3,-2,-1,1,2,3},f:x→x的平方根
②A={x|x是三角形},B={x|x是圓},f:三角形對(duì)應(yīng)它的外接圓
③A=R,B=R,f:x→x2-2
④A={-1,0,1},B={-1,0,1},f:A中的數(shù)平方
其中是A到B的映射的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2},x>a}\end{array}\right.$,若對(duì)任意實(shí)數(shù)b,使方程f(x)-b=0只有一解,則a的取值集合是{0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.橢圓$\frac{x^2}{5}$+$\frac{{3{y^2}}}{5}$=1與過點(diǎn)C(-1,0)且斜率為k的直線交于A、B兩點(diǎn).
(1)若線段AB的中點(diǎn)為(-$\frac{1}{2}$,n),求k的值;
(2)在x軸上是否存在一個(gè)定點(diǎn)M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$的值為常數(shù),若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)全集U={2,4,3-a2},P={2,a2-a+2},∁UP={-1},則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a=0.65.1,b=5.10.6,c=log0.65.1,則(  )
A.a<b<cB.c<a<bC.c<b<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.不等式-2x-1<3的解集為( 。
A.(2,+∞)B.(-∞,2)C.(-2,+∞)D.(-∞,-2)

查看答案和解析>>

同步練習(xí)冊(cè)答案