分析 (1)利用條件,分別代入直接求解;
(2)先說(shuō)明當(dāng)n=1時(shí)成立,再假設(shè)n=K(K∈N*)時(shí),猜想成立,證明n=K+1時(shí),猜想也成立.從而得證.
解答 解:(1)f1(x)=f0′(x)=$\frac{bc-ad}{(ax+b)^{2}}$,
f2(x)=f1′(x)=[$\frac{bc-ad}{(ax+b)^{2}}$]′=$\frac{-2a(bc-ad)}{(ax+b)^{3}}$;
(2)猜想fn(x)=$\frac{(-1)^{n-1}•{a}^{n-1}•(bc-ad)•n!}{(ax+b)^{n+1}}$,n∈N*,
證明:①當(dāng)n=1時(shí),由(1)知結(jié)論正確;
②假設(shè)當(dāng)n=k,k∈N*時(shí),結(jié)論正確,
即有fk(x)=$\frac{(-1)^{k-1}•{a}^{k-1}(bc-ad)•k!}{(ax+b)^{k+1}}$
=(-1)k-1ak-1(bc-ad)•(k+1)![(ax+b)-(k+1)]′=$\frac{(-1)^{k}•{a}^{k-1}•(bc-ad)•k!}{(ax+b)^{k+2}}$
所以當(dāng)n=k+1時(shí)結(jié)論成立,
由①②得,對(duì)一切n∈N*結(jié)論正確.
點(diǎn)評(píng) 本題主要考查數(shù)學(xué)歸納法證明猜想,應(yīng)注意證題的完整性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|1<x<2} | B. | {x|1≤x<2} | C. | {x|1<x≤2} | D. | {x|1≤x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $3-2\sqrt{2}$ | B. | 3 | C. | $-\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com