20.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d=2,S10=120.
(1)求an;      
 (2)若bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n-1}}}$,求數(shù)列{bn}的前n項(xiàng)和為Tn

分析 (1)通過公差d=2可知S10=10a1+$\frac{10×9}{2}$×2=120,進(jìn)而可知數(shù)列{an}是以3為首項(xiàng)、2為公差的等差數(shù)列,計(jì)算即得結(jié)論;
(2)通過(1)可知an=2n+1,通過分母有理化、裂項(xiàng)可知bn=$\frac{1}{2}$($\sqrt{2n+1}$-$\sqrt{2n-1}$),并項(xiàng)相加即得結(jié)論.

解答 解:(1)依題意,S10=10a1+$\frac{10×9}{2}$×2=120,
解得:a1=3,
∴數(shù)列{an}是以3為首項(xiàng)、2為公差的等差數(shù)列,
∴an=3+2(n-1)=2n+1;
(2)由(1)可知an=2n+1,
∴bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n-1}}}$=$\frac{1}{\sqrt{2n+1}+\sqrt{2n-1}}$=$\frac{1}{2}$($\sqrt{2n+1}$-$\sqrt{2n-1}$),
∴Tn=$\frac{1}{2}$($\sqrt{3}$-1+$\sqrt{5}$-$\sqrt{3}$+…+$\sqrt{2n+1}$-$\sqrt{2n-1}$)
=$\frac{1}{2}$( $\sqrt{2n+1}$-1)
=$\frac{\sqrt{2n+1}-1}{2}$.

點(diǎn)評 本題考查數(shù)列的通項(xiàng)與求和,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,則$\overrightarrow{a}$•$\overrightarrow$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知△ABC的三個頂點(diǎn)坐標(biāo)分別為A(-1,1),B(7,-1),C(-2,5),AB邊上的中線所在直線為l.
(1)求直線l的方程;
(2)若點(diǎn)A關(guān)于直線l的對稱點(diǎn)為D,求△BCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=x2-2x+1(x≥1)的反函數(shù)f-1(x)=(  )
A.1+$\sqrt{x}$B.1±$\sqrt{x}$C.1-$\sqrt{x}$D.$\sqrt{x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)${(\frac{{1-\sqrt{3}i}}{i})^2}$=( 。
A.-3+4iB.2+2$\sqrt{3}$iC.3-4D.-3-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中,最小值為4的是( 。
A.y=log3x+4logx3B.y=ex+4e-x
C.y=sinx+$\frac{4}{sinx}$(0<x<π)D.y=x+$\frac{4}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=ln(2x+3)+x2
(Ⅰ)討論f(x)的單調(diào)性;          
(Ⅱ)求f(x)在區(qū)間[0,1]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)某拋物線y2=mx(m>0)的準(zhǔn)線與直線x=1的距離為3,則該拋物線的方程為y2=8x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知命題p:$\frac{x-1}{x+1}$≤0,命題q:(x-m)(x-m+3)≥0,m∈R,若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案