5.所sinα=-$\frac{4}{5}$,且α是第三象限角,求:
(1)sin($\frac{π}{4}$+α);
(2)cos($\frac{π}{4}$+α);
(3)tan($\frac{π}{4}$+α).

分析 由已知求出cosα,tanα.
(1)展開兩角和的正弦得答案;
(2)展開兩角和的余弦得答案;
(3)展開兩角和的正切得答案.

解答 解:∵sinα=-$\frac{4}{5}$,且α是第三象限角,
∴cos$α=-\frac{3}{5}$,tanα=$\frac{4}{3}$.
(1)sin($\frac{π}{4}$+α)=sin$\frac{π}{4}$cosα+cos$\frac{π}{4}$sinα=$\frac{\sqrt{2}}{2}×(-\frac{3}{5})+\frac{\sqrt{2}}{2}×(-\frac{4}{5})=-\frac{7\sqrt{2}}{10}$;
(2)cos($\frac{π}{4}$+α)=cos$\frac{π}{4}$cosα-sin$\frac{π}{4}$sinα=$\frac{\sqrt{2}}{2}×(-\frac{3}{5})-\frac{\sqrt{2}}{2}×(-\frac{4}{5})=\frac{\sqrt{2}}{10}$;
(3)tan($\frac{π}{4}$+α)=$\frac{tan\frac{π}{4}+tanα}{1-tan\frac{π}{4}tanα}$=$\frac{1+\frac{4}{3}}{1-1×\frac{4}{3}}$=-7.

點(diǎn)評 本題考查三角函數(shù)的化簡求值,考查兩角和與差的三角函數(shù),是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知拋物線C:y2=4x.
(1)過拋物線C上的點(diǎn)P向x軸作垂線PQ,垂足為Q,求PQ中點(diǎn)R的軌跡D的方程;
(2)過拋物線C的焦點(diǎn)作傾斜角為45°的直線l,l與軌跡D交于A,B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,D為BC上的點(diǎn),AD平分∠BAC,且△ABD的面積是△ACD的面積的一半.
(Ⅰ)求$\frac{sin∠B}{sin∠C}$的值;
(Ⅱ)若∠BAC=120°,AD=1,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)首項為1,公比為$\frac{1}{3}$的等比數(shù)列{an}的前n項和Sn,則Sn=(  )
A.$\frac{3-2{a}_{n}}{2}$B.$\frac{2{a}_{n}-3}{2}$C.$\frac{3-{a}_{n}}{2}$D.$\frac{{a}_{n}-3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓 M與圓N:(x-$\frac{5}{3}$)2+(y+$\frac{5}{3}$)2=r2關(guān)于直線y=x對稱,且點(diǎn)D(-$\frac{5}{3}$,$\frac{1}{3}$)在圓M上.
(1)判斷圓M與圓N的公切線的條數(shù);
(2)設(shè)P為圓M上任意一點(diǎn),A(-1,$\frac{5}{3}$),B(1,$\frac{5}{3}$),P,A,B三點(diǎn)不共線,PG為∠APB的平分線,且交AB于G,求證:△PBG與△APG的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=Asin(ωx+ϕ)(其中A>0,|ϕ|<$\frac{π}{2}$,ω>0)的圖象如圖所示,
(1)求函數(shù)f(x)的解析式;
(2)若關(guān)于x的方程f(x)+$\frac{\sqrt{3}}{2}$cos2x-$\frac{3}{2}$sin2x-k=0在[0,$\frac{π}{2}$]上只有一解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若直線ax+by-1=0平分圓x2+y2-4x-4y-8=0的周長,則 ab的最大值為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=sin2x+4cosx+ax在R上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-3]B.(-∞,-3)C.(-∞,6]D.(-∞,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知A(-3,0),B(3,0),動點(diǎn)P滿足$\overrightarrow{PA}$•$\overrightarrow{PB}$=0,如圖所示作PD⊥x軸,且$\overrightarrow{DM}$=λ$\overrightarrow{DP}$(0<λ<1)
(1)求點(diǎn)M的軌跡方程C;
(2)過方程C對應(yīng)曲線的右焦點(diǎn)作斜率為1的直線lAB與曲線C交于E,F(xiàn)兩點(diǎn),曲線C上是否存在點(diǎn)H使得△EFH的重心為坐標(biāo)原點(diǎn)?若存在,求出λ;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案