分析 (1)先求得點N關(guān)于直線y=x對稱點M的坐標,可得圓M的方程,再根據(jù)圓心距大于兩圓的半徑之和,可得兩圓相離,即可得出結(jié)論;
(2)設(shè)∠PAB=2α,則∠APG=∠BPG=α,可得△PBG與△APG的面積之比=$\frac{PB}{PA}$.設(shè)點P(x,y),求得PA2和 PB2的值,可得$\frac{PB}{PA}$的值,即為△PBG與△APG的面積之比.
解答 (1)解:由于點N($\frac{5}{3}$,-$\frac{5}{3}$)關(guān)于直線y=x對稱點M(-$\frac{5}{3}$,$\frac{5}{3}$),
r=|ND|=$\frac{4}{3}$,故圓M的方程為:(x+$\frac{5}{3}$)2+(y-$\frac{5}{3}$)2=$\frac{16}{9}$.
根據(jù)|MN|=$\sqrt{\frac{100}{9}+\frac{100}{9}}$=$\frac{10\sqrt{2}}{3}$>2r,故兩圓相離,
∴圓M與圓N的公切線有4條.
(2)證明:設(shè)∠PAB=2α,則∠APG=∠BPG=α,∴△PBG與△APG的面積之比=$\frac{PB}{PA}$.
設(shè)點P(x,y),則:(x+$\frac{5}{3}$)2+(y-$\frac{5}{3}$)2=$\frac{16}{9}$.
PA2=(x+1)2+(y-$\frac{5}{3}$)2 =(x+1)2+$\frac{16}{9}$-(x+$\frac{5}{3}$)2=-$\frac{4}{3}$x;
PB2=(x-1)2+(y-$\frac{5}{3}$)2 =(x-1)2+$\frac{16}{9}$-(x+$\frac{5}{3}$)2=-$\frac{16}{3}$x;
∴$\frac{PB}{PA}$=2,即△PBG與△APG的面積之比=2.
點評 本題主要考查直線和圓的位置關(guān)系,圓和圓的位置關(guān)系,圓的切線性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | $\sqrt{6}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,3] | B. | [1,2]∪[2,3] | C. | [1,2]∪[3,+∞] | D. | [-∞,1]∪[3,+∞] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com