3.在△ABC中,${sin^2}A+{sin^2}B-{sin^2}(A+B)=\sqrt{2}sinAsinB$.
(1)求角C的大小;
(2)若$f(x)=4sin(x-\frac{C}{2})sin(x+\frac{A+B}{2})$且A、B、C成等差數(shù)列,求f(A)的值.

分析 (1)利用正弦定理和三角形內(nèi)角和定理化簡,利用余弦定理求解角C的大。
(2)根據(jù)A,B,C成等差數(shù)列,可得B=60°.那么A=π-C-B.帶入f(A)可得答案.

解答 解:(1)∵A+B+C=π,
∴sin(A+B)=sinC,
由正弦定理:${sin^2}A+{sin^2}B-{sin^2}(A+B)=\sqrt{2}sinAsinB$.
可化簡為:${a}^{2}+^{2}-{c}^{2}=\sqrt{2}ab$
根據(jù)cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{\sqrt{2}ab}{2ab}=\frac{\sqrt{2}}{2}$,
∵0<C<π
∴C=$\frac{π}{4}$.
(2)A,B,C成等差數(shù)列,即3B=π,
可得B=$\frac{π}{3}$
A+B=$\frac{3π}{4}$
那么A=$π-\frac{π}{3}-\frac{π}{4}$=$\frac{5π}{12}$
由$f(x)=4sin(x-\frac{C}{2})sin(x+\frac{A+B}{2})$,
則f(x)=4sin(x-$\frac{π}{8}$)sin(x+$\frac{3π}{8}$)=4sin(x-$\frac{π}{8}$)cos(x-$\frac{π}{8}$)=2sin(2x-$\frac{π}{4}$)
那么f(A)=2sin(2A-$\frac{π}{4}$)=2sin$\frac{7π}{12}$=$\frac{\sqrt{6}+\sqrt{2}}{2}$.

點評 本題考查了正余弦定理和三角形內(nèi)角和定理化簡計算能力和運用能力.屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=|x-1|-|2x+1|的最大值為m
(1)作函數(shù)f(x)的圖象
(2)若a2+b2+2c2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.直線2x+my=2m-4與直線mx+2y=m-2平行的充要條件是( 。
A.m=0B.m=±2C.m=2D.m=-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知△ABC中,AC=$\sqrt{2}$,BC=$\sqrt{6}$,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,若線段BA的延長線上存在點D,使∠BDC=$\frac{π}{4}$,則CD=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設(shè)集合I={3,4,5,6,7,8,9},A={8,9},則滿足B⊆I,且A∩B≠∅中的集合B的個數(shù)為( 。
A.160B.96C.64D.128

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.運行下列程序,當輸入數(shù)值-2時,輸出結(jié)果是( 。
A.7B.3C.0D.-16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知所數(shù)f(x)=2cosωx-2sinωx(ω>0)在(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞減,則當ω取得最大值時,下列說法正確的是( 。
A.ω=2B.函數(shù)f(x)的對稱軸為x=-$\frac{π}{2}$+kx(k∈Z)
C.函數(shù)f(x)的對稱中心為($\frac{π}{2}$+kx,0)(k∈Z)D.函數(shù)f(x)在[$\frac{π}{2}$,$\frac{2π}{3}$]上的最小值為-$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在△ABC中,角A,B,C的對邊分別為a,b,c且$\frac{a}$cosC+$\frac{c}{a}$cosB=3cosB.
(1)求sinB;
(2)若D為AC邊的中點,且BD=1,求△ABD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)f(x)=$\sqrt{{2}^{x}-\frac{1}{2}}$+$\frac{3}{x+1}$的定義域為{x|x>-1}.

查看答案和解析>>

同步練習冊答案