分析 (1)證明BE⊥面ACD′,GH∥BE,即可得到GH⊥平面AD′C.
(2)如圖過點D′作直線m∥AB,由AB∥EC,得直線m就是面D′AB與平面D′CE的交線,可得∠AD′E就是平面D′AB與平面D′CE的夾角的平面角,
解答 證明:(1)∵在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于E點,
把△DEC沿CE折到D′EC的位置,使D′A=2$\sqrt{3}$,
∴AE=CE=2,D′E=6-2=4,∴D′A2+AE2=D′E2,CD′=$\sqrt{{2}^{2}+{4}^{2}}$=$2\sqrt{5}$,
∴AD′⊥AE,∵AD′⊥AB,AD′∩AB=A,∴AD′⊥平面ABCE,∴面AD′C⊥ABCE,又因為ABCE是正方形,∴BE⊥AC,
⇒BE⊥面ACD′,∵G,H分別為D′B,D′E的中點,∴GH∥BE,∴GH⊥平面AD′C;
(2)如圖過點D′作直線m∥AB,∵AB∥EC,∴直線m就是面D′AB與平面D′CE的交線,
∵CE⊥AE,面AED′⊥面ABCE于AE,∴CE⊥D′E,即D′E⊥m,
∵AD′⊥AB,∴AD′⊥m,∵AD′?面AD′B,D′E?D′CE,∴∠AD′E就是平面D′AB與平面D′CE的夾角的平面角,
在直角三角形AD′E中,AE=2,D′E=4,可得,∴∠AD′E=30°.
平面D′AB與平面D′CE的夾角為300
點評 本題考查了空間線面垂直的判定,及定義法求二面角,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | 7 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{16}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{11}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,0) | C. | (-1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{4}$,$\frac{1}{4}$) | B. | [-$\frac{1}{4}$,$\frac{1}{4}$] | C. | (-∞,-$\frac{1}{4}$]∪(0,$\frac{1}{4}$) | D. | (-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com