A. | $\frac{16}{3}$ | B. | $\frac{9}{2}$ | C. | -8 | D. | $\frac{17}{2}$ |
分析 先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值,只需求出直線z=3y+x過(guò)點(diǎn)A時(shí),z最大值即可.
解答 解:作出可行域如圖,
由z=3y+x知,y=-$\frac{1}{3}$x+$\frac{1}{3}$z,
所以動(dòng)直線y=-$\frac{1}{3}$x+$\frac{1}{3}$z的縱截距取得最大值時(shí),
目標(biāo)函數(shù)取得最大值.
結(jié)合可行域可知當(dāng)動(dòng)直線經(jīng)過(guò)點(diǎn)A時(shí),由$\left\{\begin{array}{l}{x-y=0}\\{x+2y=4}\end{array}\right.$,解得A($\frac{4}{3}$,$\frac{4}{3}$)
目標(biāo)函數(shù)去的最大值$\frac{4}{3}+3×\frac{4}{3}$=$\frac{16}{3}$.
故選:A.
點(diǎn)評(píng) 本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{{{2^{n-1}}}}$ | B. | $\frac{1}{{{2^n}-1}}$ | C. | $\frac{1}{{{3^{n-1}}}}$ | D. | $\frac{1}{{{2^{n-1}}+1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com