4.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=(an+1)2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)利用遞推關(guān)系、等差數(shù)列的通項(xiàng)公式即可得出.
(2)${b_n}=(2n-1)•{2^n}$,利用“錯(cuò)位相減法”、等比數(shù)列的求和公式即可得出.

解答 解:(1)當(dāng)n=1時(shí),$4{a_1}={({a_1}+1)^2}$,∴a1=1…(1分)
當(dāng)n≥2時(shí),$4{S_{n-1}}={({a_{n-1}}+1)^2}$,又$4{S_n}={({a_n}+1)^2}$,兩式相減得:$4{a_n}=a_n^2+2{a_n}-a_{n-1}^2-2{a_{n-1}}$,…(2分)
即 (an+an-1)(an-an-1-2)=0,…(4分)
由an>0,∴an-an-1=2,…(5分)
所以,數(shù)列{an}是首項(xiàng)為1,公差為2的等差數(shù)列,即an=2n-1.…(6分)
(2)∵${b_n}=(2n-1)•{2^n}$,
∴${T_n}=1×{2^1}+3×{2^2}+5×{2^3}+…+(2n-1)×{2^n}$①
$2{T_n}=1×{2^2}+3×{2^3}+5×{2^4}+…+(2n-3)×{2^n}+(2n-1)×{2^{n+1}}$②…(8分)
①-②得-Tn=2+2(22+23+…+2n)-(2n-1)×2n+1=$2+\frac{{8-{2^{n+2}}}}{1-2}-(2n-1)×{2^{n+1}}$=2-8+2n+2-(2n-1)×2n+1
=-6+2n+1(2-2n+1)=-6+2n+1(3-2n)…(11分)
∴${T_n}=6+{2^{n+1}}(2n-3)$.…(12分)

點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知a=sin153°,b=cos62°,$c={log_{\frac{1}{2}}}\frac{1}{3}$,則( 。
A.a>b>cB.c>a>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知tan(π+α)=2,則cos2α+sin2α=$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某校為提高學(xué)生身體素質(zhì)決定對(duì)全校高三900名學(xué)生,分三批次進(jìn)行身體素質(zhì)測(cè)試,在三個(gè)批次中男、女學(xué)生數(shù)如下表所示,已知在全體學(xué)生中隨機(jī)抽取1名,抽到第二批次中女學(xué)生的概率是0.16.
 第一批次 第二批次 第三批次
女同學(xué)  196 x y
 男同學(xué) 204 156z
(Ⅰ)求x的值;
(Ⅱ)已知y≥96,z≥96,求第三批次中女同學(xué)比男同學(xué)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.定義在R上的函數(shù)f(x)滿足f(x+2)=$\frac{1}{2}$f(x),當(dāng)x∈[0,2]時(shí),f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2x,0≤x<1}\\{{-2}^{1-|x-\frac{3}{2}|,1≤x<2}}\end{array}\right.$,函數(shù)g(x)=x3+3x2+m.若對(duì)任意s∈[-4,-2),存在t∈[-4,-2),不等式f(s)-g(t)≥0成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-12]B.(-∞,14]C.(-∞,-8]D.(-∞,$\frac{31}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖是給出的一種算法,則該算法輸出的結(jié)果是24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知當(dāng)x=θ時(shí),函數(shù)f(x)=2sinx-cosx取得最大值,則sin(2θ+$\frac{π}{4}$)=( 。
A.$\frac{7\sqrt{2}}{10}$B.$\frac{\sqrt{2}}{10}$C.-$\frac{\sqrt{2}}{10}$D.-$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow$=(x,3),且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則x=-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.用g(n)表示自然數(shù)n的所有因數(shù)中最大的那個(gè)奇數(shù),例如:9的因數(shù)有1,3,9,則g(9)=9,;10的因數(shù)有1,2,5,10,g(10)=5;那么g(1)+g(2)+g(3)+…+g(22016-1)=$\frac{4}{3}$×42015-$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案