7.已知正項(xiàng)數(shù)列{an}中,a1=1,a2=2,2an2=an-12+an+22(n≥2),bn=$\frac{1}{{a}_{n}+{a}_{n+1}}$記數(shù)列{bn}的前n項(xiàng)和為Sn,則S33的值是(  )
A.$\sqrt{99}$B.$\sqrt{33}$C.4$\sqrt{2}$D.3

分析 由2an2=an-12+an+12(n≥2),可得數(shù)列{an2}為等差數(shù)列,進(jìn)而得到bn=$\frac{1}{3}$($\sqrt{3n+1}$-$\sqrt{3n-2}$),再利用“裂項(xiàng)求和”方法即可得出.

解答 解:∵2an2=an-12+an+12(n≥2),
∴數(shù)列{an2}為等差數(shù)列,首項(xiàng)為1,公差為22-1=3.
∴an2=1+3(n-1)=3n-2.a(chǎn)n>0.
∴an=$\sqrt{3n-2}$,
∴bn=$\frac{1}{{a}_{n}+{a}_{n+1}}$=$\frac{1}{\sqrt{3n-2}+\sqrt{3n+1}}$=$\frac{1}{3}$($\sqrt{3n+1}$-$\sqrt{3n-2}$),
∴數(shù)列{bn}的前n項(xiàng)和為Sn=$\frac{1}{3}$[($\sqrt{4}$-1)+($\sqrt{7}$-$\sqrt{4}$)+…+($\sqrt{3n+1}$-$\sqrt{3n-2}$)]
=$\frac{1}{3}$($\sqrt{3n+1}$-1).
則S33=$\frac{1}{3}$(10-1)=3.
故選:D

點(diǎn)評(píng) 本題考查了等差數(shù)列的定義通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1與橢圓$\frac{x^2}{m^2}+\frac{y^2}{b^2}$=1(m>b>0)的離心率之積等于1,則以a,b,m為邊長的三角形一定是( 。
A.等腰三角形B.鈍角三角形C.銳角三角形D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)y=x2+1,求:
(1)在點(diǎn)(1,2)處的切線方程;
(2)過點(diǎn)(1,1)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)命題p:實(shí)數(shù)a滿足不等式3a≤9,命題q:x2+3(3-a)x+9≥0的解集為R.已知“p∧q”為真命題,并記為條件r,且條件t:實(shí)數(shù)a滿足a<m或$a>m+\frac{1}{2}$.
(1)求條件r的等價(jià)條件(用a的取值范圍表示);
(2)若r是¬t的必要不充分條件,求正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$f(x)={cos^2}x-\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}$,
(1)求出f(x)圖象的對(duì)稱中心的坐標(biāo);
(2)△ABC三個(gè)內(nèi)角A、B、C所對(duì)邊為a、b、c,若f(A)+1=0,b+c=2.求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=x2cosx的導(dǎo)數(shù)為(  )
A.y′=x2cosx-2xsin xB.y′=2xcos x+x2sin x
C.y′=2xcosx-x2sinxD.y′=xcosx-x2sin x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{3x}{x+3}$,數(shù)列{xn}的通項(xiàng)由xn=f(xn-1)(n≥2且x∈N*)確定.
(1)求證:數(shù)列($\frac{1}{{x}_{n}}$)是等差數(shù)列;
(2)當(dāng)x1=$\frac{1}{2}$時(shí),求x2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列關(guān)于冪函數(shù)y=xα(α∈Q)的論述中,正確的是( 。
A.當(dāng)α=0時(shí),冪函數(shù)的圖象是一條直線
B.冪函數(shù)的圖象都經(jīng)過(0,0)和(1,1)兩個(gè)點(diǎn)
C.若函數(shù)f(x)為奇函數(shù),則f(x)在定義域內(nèi)是增函數(shù)
D.冪函數(shù)f(x)的圖象不可能在第四象限內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知角α的終邊經(jīng)過點(diǎn)(m,9),且$tanα=\frac{3}{4}$,則sinα的值為( 。
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

同步練習(xí)冊答案