分析 用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{BE}$,計(jì)算${\overrightarrow{BE}}^{2}$即可得出|$\overrightarrow{BE}$|.
解答 解:如圖,延長AB到F,使AF=2AB,連接CF,
取CF中點(diǎn)O,連接AO,則$\overrightarrow{AC}$+2$\overrightarrow{AB}$=2$\overrightarrow{AO}$=3$\overrightarrow{AD}$,
∴$\overrightarrow{AD}=\frac{2}{3}\overrightarrow{AO}$,$\overrightarrow{AO}$=$\frac{1}{2}$($\overrightarrow{AC}+2\overrightarrow{AB}$),
∵$\overrightarrow{AE}$=2$\overrightarrow{ED}$,
∴$\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AD}=\frac{4}{9}\overrightarrow{AO}$=$\frac{2}{9}$($\overrightarrow{AC}+2\overrightarrow{AB}$)=$\frac{4}{9}\overrightarrow{AB}+\frac{2}{9}\overrightarrow{AC}$;
∵∠BAC=$\frac{π}{3}$,∴$\overrightarrow{AB}•\overrightarrow{AC}$=2×3×cos60°=3,
∴$\overrightarrow{BE}$=$\overrightarrow{BA}+\overrightarrow{AE}$=-$\frac{5}{9}\overrightarrow{AB}$+$\frac{2}{9}$$\overrightarrow{AC}$,
∴${\overrightarrow{BE}}^{2}$=(-$\frac{5}{9}\overrightarrow{AB}$+$\frac{2}{9}$$\overrightarrow{AC}$)2=$\frac{25}{81}$${\overrightarrow{AB}}^{2}$+$\frac{4}{81}{\overrightarrow{AC}}^{2}$-$\frac{20}{81}$$\overrightarrow{AB}•\overrightarrow{AC}$=$\frac{76}{81}$,
∴|$\overrightarrow{BE}$|=$\sqrt{\frac{76}{81}}$=$\frac{2\sqrt{19}}{9}$.
故答案為:$\frac{2\sqrt{19}}{9}$.
點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,平面向量的幾何運(yùn)算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4,16) | B. | (0,12) | C. | (9,21) | D. | (14,16) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1.+∞) | B. | (0.1) | C. | ∅ | D. | (0.1)U(1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com