分析 (Ⅰ)依題意有$c+\sqrt{{a^2}+{b^2}}=2b$,將其變形可得b=2c,結合橢圓的幾何性質以及離心率公式可得$e=\frac{c}{a}=\frac{c}{{\sqrt{{b^2}+{c^2}}}}$,計算可得答案;
(Ⅱ)設直線l的方程為y=k(x+c),當k>0時,表示出k和xM、yM,將直線l的方程和橢圓方程聯立,解可得xM、yM的值,由斜率公式計算可得k的值,同理分析k<0時可得k的值,綜合可得答案.
解答 解:(Ⅰ)依題意有$c+\sqrt{{a^2}+{b^2}}=2b$,
把上式移項平方并把a2=b2+c2,代入得b=2c,
又由a2=b2+c2;
所以橢圓的離心率$e=\frac{c}{a}=\frac{c}{{\sqrt{{b^2}+{c^2}}}}=\frac{{\sqrt{5}}}{5}$.
(Ⅱ)設直線l的方程為y=k(x+c),
先研究k>0的情況,要使|MF|=|FP|,
則xM=-2c,${y_M}=-b•\sqrt{1-\frac{{{x_M}^2}}{a^2}}=-\frac{{\sqrt{5}}}$,
因此$k=\frac{{0-(-\frac{{\sqrt{5}}})}}{-c-(-2c)}=\frac{{2\sqrt{5}}}{5}$.
將直線l的方程和橢圓方程聯立可得$\left\{\begin{array}{l}y=\frac{{2\sqrt{5}}}{5}(x+c)\\ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\end{array}\right.$解得$\left\{\begin{array}{l}{x_M}=-2c\\{x_N}=c\end{array}\right.$
由于點N的橫坐標為c,因此|PN|也等于|PF|,
同理,當k<0時,由對稱性可知k=$-\frac{{2\sqrt{5}}}{5}$;
直線l的斜率為$\frac{{2\sqrt{5}}}{5}$或$-\frac{{2\sqrt{5}}}{5}$.
點評 本題考查橢圓的幾何性質,涉及直線與橢圓的位置關系,關鍵是依據題意,求出橢圓的標準方程.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 5 | C. | $2\sqrt{6}$ | D. | 25 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com