20.在長為16cm的線段MN上任取一點(diǎn)P,以MP,NP為鄰邊作一矩形,則該矩形的面積大于60cm2的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

分析 設(shè)MP=x,則NP=16-x(0<x<16),由矩形的面積S=x(16-x)>60可求x的范圍,利用幾何概率的求解公式可求.

解答 解:設(shè)MP=x,則NP=16-x(0<x<16)
矩形的面積S=x(16-x)>60,
∴x2-16x+60<0
∴6<x<10
由幾何概率的求解公式可得,矩形面積大于60cm2的概率P=$\frac{10-6}{16}$=$\frac{1}{4}$,
故選A.

點(diǎn)評 本題主要考查了二次不等式的解法,與區(qū)間長度有關(guān)的幾何概率的求解公式的應(yīng)用,屬于基礎(chǔ)試題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)復(fù)數(shù)z滿足$\frac{{{{({1+i})}^2}}}{z}=1-i$,則z=( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知定義在R上的奇函數(shù)f(x)滿足f(1)=e(e為自然對數(shù)的底數(shù)),且當(dāng)x≥0時(shí),有(x-1)f(x)<xf'(x),則不等式xf(x)-e|x|>0的解集是( 。
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-1,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,其左焦點(diǎn)、上頂點(diǎn)和左頂點(diǎn)分別為F,A,B,坐標(biāo)原點(diǎn)為O,且線段FO,OA,AB的長度成等差數(shù)列.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過點(diǎn)F的一條直線l交橢圓于點(diǎn)M,N,交y軸于點(diǎn)P,使得線段MN被點(diǎn)F,P三等分,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐中P-ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=$\sqrt{2}$,BC=2$\sqrt{2}$,PA=2.
(1)求證:AB⊥PC;
(2)在線段PD上,是否存在一點(diǎn)M,使得二面角M-AC-D的大小為45°,如果存在,求BM與平面MAC所成角,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{m}$=($\sqrt{3}$,x),$\overrightarrow{n}$=(1,$\sqrt{3}$),且向量$\overrightarrow{m}$、$\overrightarrow{n}$的夾角為$\frac{π}{6}$,則x=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁UN)={x|x=1或x≥3},那么a的取值為( 。
A.a=$\frac{1}{2}$B.a≤$\frac{1}{2}$C.a=-$\frac{1}{2}$D.a≥$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若關(guān)于x 的方程sinx+cosx-m=0在區(qū)間[0,$\frac{π}{2}$]上有解,則實(shí)數(shù)m的取值范圍是[1,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.圓(x-1)2+(y-2)2=1關(guān)于直線x-y-2=0對稱的圓的方程為( 。
A.(x+4)2+(y+1)2=1B.(x+2)2+(y+4)2=1C.(x-2)2+(y+1)2=1D.(x-4)2+(y+1)2=1

查看答案和解析>>

同步練習(xí)冊答案