16.中國(guó)古代數(shù)學(xué)經(jīng)典<<九章算術(shù)>>中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的三棱錐稱之為鱉臑(biē nào).若三棱錐P-ABC為鱉臑,且PA⊥平面ABC,PA=AB=2,又該鱉臑的外接球的表面積為24π,則該鱉臑的體積為$\frac{8}{3}$.

分析 利用已知條件畫出圖形,求出幾何體的底面面積與高,然后求解幾何體的體積.

解答 解:由題意,三棱錐P-ABC為鱉臑,且PA⊥平面ABC,PA=AB=2,如圖:∠PAB=∠PAC=∠ABC=∠PBC=90°,
又該鱉臑的外接球的表面積為24π,可知PC為外接球的直徑,則R2=$\frac{24π}{4π}$=6,
BC=$\sqrt{(2\sqrt{6})^{2}-(2\sqrt{2})^{2}}$=4,
則該鱉臑的體積為:$\frac{1}{3}×\frac{1}{2}×2×4×2$=$\frac{8}{3}$.
故答案為:$\frac{8}{3}$.

點(diǎn)評(píng) 本題考查幾何體的外接球,幾何體的體積的求法,直線與平面的垂直關(guān)系的應(yīng)用,考查空間想象能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{3}$,聯(lián)接橢圓四個(gè)頂點(diǎn)的四邊形面積為2$\sqrt{6}$.
(1)求橢圓C的方程;
(2)A、B是橢圓的左右頂點(diǎn),P(xP,yP)是橢圓上任意一點(diǎn),橢圓在P點(diǎn)處的切線與過A、B且與x軸垂直的直線分別交于C、D兩點(diǎn),直線AD、BC交于Q(xQ,yQ),是否存在實(shí)數(shù)λ,使xP=λxQ恒成立,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.點(diǎn)A,B,C,D在同一個(gè)球的球面上,AB=BC=$\sqrt{6}$,∠ABC=90°,若四面體ABCD體積的最大值為3,則這個(gè)球的表面積為( 。
A.B.C.D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合A={x∈N|2x<6},集合B={x∈R|x2-4x+3<0},則A∩(∁RB)=( 。
A.{0}B.{2}C.{0,2}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知定義在R上的奇函數(shù)f(x)滿足f(1)=e(e為自然對(duì)數(shù)的底數(shù)),且當(dāng)x≥0時(shí),有(x-1)f(x)<xf'(x),則不等式xf(x)-e|x|>0的解集是(  )
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-1,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.直角△ABC中,AD為斜邊BC邊的高,若$|{\overrightarrow{AC}}|=1$,$|{\overrightarrow{AB}}|=3$,則$\overrightarrow{CD}•\overrightarrow{AB}$=( 。
A.$\frac{9}{10}$B.$\frac{3}{10}$C.$-\frac{3}{10}$D.$-\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,其左焦點(diǎn)、上頂點(diǎn)和左頂點(diǎn)分別為F,A,B,坐標(biāo)原點(diǎn)為O,且線段FO,OA,AB的長(zhǎng)度成等差數(shù)列.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過點(diǎn)F的一條直線l交橢圓于點(diǎn)M,N,交y軸于點(diǎn)P,使得線段MN被點(diǎn)F,P三等分,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知向量$\overrightarrow{m}$=($\sqrt{3}$,x),$\overrightarrow{n}$=(1,$\sqrt{3}$),且向量$\overrightarrow{m}$、$\overrightarrow{n}$的夾角為$\frac{π}{6}$,則x=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知k≥-1,實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤4}\\{3x-2y≥6}\\{y≥k}\end{array}\right.$,且$\frac{y+1}{x}$的最小值為k,則k的值為( 。
A.$\frac{2-\sqrt{2}}{5}$B.$\frac{2±\sqrt{2}}{5}$C.$\frac{3-\sqrt{5}}{2}$D.$\frac{3±\sqrt{5}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案