分析 要使兩切線夾角最大,需拋物線上的點P到圓心的距離最小,求出P到圓心的距離最小值,利用直角三角形中的邊角關(guān)系,求出兩切線夾角夾角的一半,進而得到兩切線夾角的最大值.
解答 解;要使兩切線夾角最大,需拋物線上的點P到圓心的距離最小,點P到圓心的距離為;
d=$\sqrt{(x-3)^{2}+{y}^{2}}$=$\sqrt{(x-3)^{3}+4x}$=$\sqrt{(x-1)^{2}+8}$≥2$\sqrt{2}$,
即點P到圓心的距離最小為2$\sqrt{2}$,圓A:(x-3)2+y2=2的半徑r=$\sqrt{2}$,
設(shè)兩切線夾角為2α,則sinα=$\frac{1}{2}$,∴α=30°,∴2α=60° 故兩切線夾角的最大值為60°,
故答案為:60°.
點評 本題考查圓的切線性質(zhì),從圓外一點作圓的切線,此點到圓心的距離越小,兩切線夾角就越大.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{15}}}{3}$ | B. | $\frac{{\sqrt{17}}}{3}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{{\sqrt{7}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,-1,0,1,2} | B. | {-2,-1,0,1} | C. | {-2,-1,0} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com