分析 根據(jù)題意建立關(guān)于a、c的方程組,解出a=$\sqrt{2}$,c=1,從而得到b2=a2-c2=1,可得橢圓的方程.
解答 解:∵$e=\frac{{\sqrt{2}}}{2}$,橢圓上的點(diǎn)到焦點(diǎn)的最短距離為$\sqrt{2}-1$,
∴$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,a-c=$\sqrt{2}$-1,
解得a=$\sqrt{2}$,c=1,
∴b2=a2-c2=1,
由此可得橢圓的方程為$\frac{{x}^{2}}{2}+{y}^{2}$=1,
故答案為$\frac{{x}^{2}}{2}+{y}^{2}$=1.
點(diǎn)評 本題已知橢圓滿足的條件,求橢圓的方程,著重考查了橢圓的定義與標(biāo)準(zhǔn)方程等知識,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線 | |
B. | 以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊繞旋轉(zhuǎn)軸旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐 | |
C. | 棱錐的側(cè)棱長與底面多邊形的邊長都相等,則該棱錐可能是六棱錐 | |
D. | 各個面都是三角形的幾何體是三棱錐 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $-\frac{5}{6}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2<a-b<0 | B. | -2<a-b<-1 | C. | -1<a-b<0 | D. | -1<a-b<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1<x<1} | B. | {x|-2<x<2} | C. | {x|0<x<1} | D. | {x|1<x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com