8.$\overrightarrow a=(sinα,1)$,$\overrightarrow b=(-2,4cosα)$,若$\overrightarrow a$與$\overrightarrow b$共線,則tanα=( 。
A.1B.-1C.±1D.$\sqrt{2}$

分析 $\overrightarrow a$與$\overrightarrow b$共線,可得sinα•4cosα+2=0.可得2sinαcosα+sin2α+cos2α=0,化簡即可得出.

解答 解:∵$\overrightarrow a$與$\overrightarrow b$共線,∴sinα•4cosα+2=0.
∴2sinαcosα+sin2α+cos2α=0,
∴(sinα+cosα)2=0,
∴sinα+cosα=0,
則tanα=-1.
故選:-1.

點(diǎn)評 本題考查了向量共線定理、三角函數(shù)基本關(guān)系式求值,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在數(shù)列{an}中,a1=1,an+1=can+cn+1(2n+1)(n∈N*),其中實(shí)數(shù)c≠0.
(1)求a2,a3,并由此歸納出{an}的通項(xiàng)公式
(2)用數(shù)學(xué)歸納法證明(Ⅰ)的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.兩個(gè)相關(guān)變量滿足如下關(guān)系:
x1015202530
y1 0031 0051 0101 0111 014
則兩變量的回歸方程為( 。
A.$\widehat{y}$=0.56x+997.4B.$\widehat{y}$=0.63x-231.2C.$\widehat{y}$=0.56x+501.4D.$\widehat{y}$=60.4x+400.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,S7=70且a1,a2,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{{2{S_n}}}{n}$,求數(shù)列$\left\{\frac{1}{_{n}_{n+1}}\right\}前的n$項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,(a+b+c)(a-b+c)=ac,則B=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在直二面角A-BD-C中,△ABD、△CBD均是以BD為斜邊的等腰直角三角形,取AD中點(diǎn)E,將△ABE沿BE翻折到△A1BE,在△ABE的翻折過程中,下列不可能成立的是( 。
A.BC與平面A1BE內(nèi)某直線平行B.CD∥平面A1BE
C.BC與平面A1BE內(nèi)某直線垂直D.BC⊥A1B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)P為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的動點(diǎn),F(xiàn)1、F2為橢圓C的焦點(diǎn),I為△PF1F2的內(nèi)心,則直線IF1和直線IF2的斜率之積( 。
A.是定值B.非定值,但存在最大值
C.非定值,但存在最小值D.非定值,且不存在最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.甲、乙兩地相距600千米,一輛貨車從甲地勻速行駛到乙地,規(guī)定速度不超過100千米/小時(shí).已知貨車每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分組成:可變部分與速度v(千米/小時(shí))的平方成正比,比例系數(shù)為0.02;固定部分為m元.
(1)把全程運(yùn)輸成本y(元)表示為速度v(千米/小時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,貨車應(yīng)以多大速度勻速行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.用反證法證明命題“三角形的內(nèi)角中至少有一個(gè)不大于60°”時(shí),假設(shè)命題的結(jié)論不成立的正確敘述是②(填序號).
①假設(shè)三個(gè)角都不大于60°;         ②假設(shè)三個(gè)角都大于60°;
③假設(shè)三個(gè)角至多有一個(gè)大于60°;    ④假設(shè)三個(gè)角至多有兩個(gè)大于60°.

查看答案和解析>>

同步練習(xí)冊答案